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Abstract

We prove that the Dean–Kawasaki-type stochastic partial differential equation

∂ρ = ∇ · (√ρ ξ) +∇ ·
(
ρH(ρ)

)
,

with vector-valued space-time white noise ξ, does not admit solutions for any initial
measure and any vector-valued bounded measurable function H on the space of
measures. This applies in particular to the pure-noise Dean–Kawasaki equation
(H ≡ 0). The result is sharp, in the sense that solutions are known to exist for some
unbounded H.
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1 Introduction and the main result

Let Md be either the standard d-dimensional Euclidean space Rd or the flat d-
dimensional torus Td, d ≥ 1. For k ∈ N0, we let Ckb be the space of all continuous
and bounded real-valued functions on Md with continuous and bounded derivatives
up to order k, and we set Cb := C0

b , endowed with the uniform norm ‖ · ‖0. For a Borel
measure µ on Md and a Borel function f : Md → R, we write µf :=

∫
f dµ whenever the

integral makes sense. We denote by M +
b the space of all positive finite Borel measures

on Md, endowed with the narrow topology, i.e. the coarsest topology for which all the
functionals µ 7→ µf , with f ∈ Cb, are continuous.

On Md we consider the Dean–Kawasaki equation

dµt = α∆µt dt+G(µt) dt+∇ · (√µt ξ) , (1.1)

where α ≥ 0 is a parameter, G : M +
b → R is Borel measurable, ξ is an Rd-valued space-

time white noise, and (µt)t≥0 is an M +
b -valued stochastic process with a.s. continuous

paths.
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Ill-posedness of the pure-noise Dean–Kawasaki equation

The equation with α > 0 has been proposed by K. Kawasaki in [20] and, independently,
by D. S. Dean in [8], to describe the density function of a system of N � 1 particles
subject to a diffusive Langevin dynamics, with the noise ξ describing the particles’
thermal fluctuations. Equations like (1.1) — possibly with a different non-linearity in
the noise term — fall within the class of Ginzburg–Landau stochastic phase field models,
and effectively describe super-cooled liquids, colloidal suspensions, the glass-liquid
transition, bacterial patterns, and other systems; see, e.g., the recent review [28].

From a mathematical point of view, these equations model in the continuum the
fluctuating hydrodynamic theory of interacting particle systems; see, e.g., [27, 11, 2,
14] and the review [3]. A specific interest in the case of (1.1) — i.e., with a square-
root non-linearity in the noise term — is partially motivated by the structure of the
noise in connection with the geometry of the L2-Kantorovich–Rubinstein–Wasserstein
space (P2,W2). Indeed, in the free case (H ≡ 0), a solution µt to (1.1) with α = 1

is an intrinsic random perturbation of the gradient flow of the Boltzmann–Shannon
entropy on P2 by a noise ξ distributed according to the energy dissipated by the
system, i.e. by the natural isotropic noise arising from the Riemannian structure of P2,
see [18, 25, 24, 1].

We would like to stress that we consider here Dean–Kawasaki-type equations with
white noise: a very fruitful theory has been developed for similar equations with col-
ored, truncated, or otherwise approximated noise (both of Itô and Stratonovich type),
abstractly [6, 14, 15, 16, 17], numerically [5, 7, 12], and — for both colored and white
noise — approaching concrete applications [11, 13].

1.1 Main result

A rigorous definition of solutions to (1.1) was introduced by V. Konarovskyi, T. Leh-
mann, and M.-K. von Renesse in [21] for G ≡ 0, and in [22] when

G(µ) = ∇ ·
(
µH(µ)

)
(1.2)

for H : M +
b → Rd, as we now recall.

Definition 1.1 (Martingale solutions, cf. [22, Dfn. 1]). Fix T ∈ (0,∞) and let (Ω,F ,P) be
a complete probability space. A continuous M +

b -valued process µ• := (µt)t∈[0,T ] on (Ω,F )

is a solution to (1.1) (up to time T ) if, for each f ∈ C2
b the process Mf

• :=
(
Mf
t

)
t∈[0,T ]

with

Mf
t :=µtf − µ0f −

∫ t

0

µs
(
α
2 ∆f +∇f ·H(µs)

)
ds , t ∈ [0, T ] ,

is a continuous P-martingale on (Ω,F ) with respect to the filtration F• := (Ft)t∈[0,T ]

generated by µ•, with quadratic variation

[
Mf

]
t

=

∫ t

0

µs |∇f |2 ds , t ∈ [0, T ] .

In the case when α > 0 and H(µ) = ∇ δF (µ)
δµ for some sufficiently smooth and

bounded F : M +
b → R, Konarovskyi, Lehmann, and von Renesse have shown in [21, 22]

that (1.1) admits solutions if and only if the initial datum µ0 is the empirical measure of a
finite particle system, i.e. µ0 is a purely atomic measure and each atom has mass 1/α. In
this case, the solution µ• exists for all times, is unique and identical with the empirical
measure of the Langevin particle systems with mean-field interaction F . Further exten-
sions of these rigidity results were subsequently obtained by Konarovskyi and Müller
in [23] and by Müller, von Renesse, and Zimmer in [26].

Page 2/9



Ill-posedness of the pure-noise Dean–Kawasaki equation

Their technique, however, does not apply to the case α = 0, hence in particular it
does not cover the pure-noise Dean–Kawasaki equation. Here, we complete the picture
by addressing precisely this case.

Theorem 1.2. Let α = 0 and G(µ) = ∇·
(
µH(µ)

)
for some bounded Borel H : M +

b → Rd.
Then (1.1) has no solutions for any initial condition µ0 ∈M +

b .

This result is sharp, in the sense that existence of solutions was shown by Konarovskyi
and von Renesse in [24, 25] for the Dean–Kawasaki equation on the real line with singular
drift

dµt =
∑

x:µt{x}>0

∆δx dt+∇ · (√µt ξ) , (1.3)

that is, in the case when H in (1.2) is unbounded. Existence of solutions to (1.3) were
eventually constructed by the first named author also on compact manifolds [9] and in
other more general settings [10].

2 Proofs

For any real-valued function f we denote by Σf the singular set of f , i.e. the set
of points in the domain of f at which f is not differentiable. If not stated other-
wise, (Ω,F ,P) is a complete probability space, and we denote by E the P-expectation.
Further let µ• be a solution to (1.1) up to time T on (Ω,F ,P) and assume that

E[µ0M
d] <∞ . (2.1)

(Note that (2.1) is trivially satisfied if µ0 is deterministic.)
We start with some preparatory lemmas.

Lemma 2.1. If µ• is a solution to (1.1) up to time T , then µtM
d = µ0M

d a.s. for
all t ∈ [0, T ].

Proof. Choosing f = 1 in the martingale problem in Definition 1.1, we have
[
M1
]
t

= 0 for
all times. It follows that µtMd = M1

t is a.s. a constant martingale, and therefore µtMd =

µ0M
d a.s. for all times. �

For each t > 0 define a measure µ∗t on M1 as

µ∗t :=E

∫ t

0

∫
Md−1

µs( · ,dx2, . . . ,dxd) ds (2.2)

Whenever the assumption in (2.1) is satisfied, µ∗t is a finite measure by Lemma 2.1, hence
the set At of its atoms is at most countable.

Throughout the rest of this work we assume that (2.1) holds, we fix T > 0 and we
set A :=AT .

Lemma 2.2. There exists a continuous function g : M1 → R with the following properties:

(i) g is piecewise affine, non-negative, and bounded;

(ii) Σg ∩A = ∅;

(iii) Σg is at most countable and |g′| = 1 on Σc
g;

Proof. We may dispense with showing that g is non-negative. Indeed, suppose we
have found some function g with all the required properties except non-negativity.
Then, g − inf g still satisfies all these properties, since it has the same singular set as g,
and is additionally non-negative.
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Assume M1 = R. Fix y0 ∈ Ac, and define inductively a countable set Y := {yk}k∈Z in
the following way: if k ∈ Z±, choose yk ∈ Ac such that |yk − (yk∓1 ± 1)| ≤ 2−k. Further
set

ak :=



k∑
i=1

(−1)i−1(yi − yi−1) if k ∈ Z+ ,

0 if k = 0 ,
−1∑
i=k

(−1)i+1(yi+1 − yi) if k ∈ Z− .

In this way, Y ⊂ Ac and |ak| ≤ 2 for every k ∈ Z. It follows that the linear spline g

interpolating the points ((yk, ak))k∈Z has all the desired properties (with the possible
exception of non-negativity) and in particular satisfies ‖g‖0 ≤ supk |ak| ≤ 2.

Assume M1 = T1. All sets and points in the rest of the proof are regarded mod 1.
Since A is countable, A1 :=A ∪ (A+ {1/2}) is countable too, and we can choose y 6∈ A1,
which implies that y+1/2 6∈ A1 as well. Then, the function g defined as the piecewise affine
function with singular set {y, y + 1/2} and interpolating the points (y, 0) and (y + 1/2, 1/2)

has all the desired properties. �

Proposition 2.3. Fix T ∈ (0,∞), and let µ• := (µt)t≤T be a solution — if any exists —

to (1.1) for α = 0 up to time T . Further suppose that: fn : Md → R is a function in C2
b for

each n ∈ N, f : Md → R is a function in C0
b , h : Md → Rd is a Borel measurable function

with h ≡ ∇f on Σc
f , satisfying

(a) lim
n
fn = f uniformly on Md;

(b) lim
n

∫ T

0

µs |∇fn − h|ds = 0 a.s.

Then, the process M• := (Mt)t∈[0,T ] with

Mt :=µtf − µ0f −
∫ t

0

µs
(
h ·H(µs)

)
ds , t ∈ [0, T ] , (2.3)

is a martingale with respect to the filtration F• := (Ft)t∈[0,T ] generated by µ•, with
quadratic variation

[M ]t =

∫ t

0

µs |h|2 ds , t ∈ [0, T ] . (2.4)

Proof. By Definition 1.1, for every n ∈ N, the processes Mn
• := (Mn

t )t∈[0,T ] with

Mn
t :=µtfn − µ0fn −

∫ t

0

µs
(
∇fn ·H(µs)

)
ds , t ∈ [0, T ] , (2.5)

is a continuous martingale w.r.t. the same filtration F•, with quadratic variation

[Mn]t =

∫ t

0

µs |∇fn|2 ds , t ∈ [0, T ] . (2.6)

The conclusion will follow letting n→∞ in (2.5) and applying [4, Lem. B.11], provided
we show that Mn

• converges to M• in probability uniformly on [0, T ], that is

P- lim
n

sup
t≤T
|Mn

t −Mt| = 0 . (2.7)
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We show the stronger statement that

lim
n

sup
t≤T
|Mn

t −Mt| = 0 a.s.

Indeed, by (a),
lim
n
|µ0fn − µ0f | = 0 a.s. (2.8)

By Lemma 2.1 and by (a),

lim
n

sup
t∈[0,T ]

|µtfn − µtf | ≤ lim
n

sup
t∈[0,T ]

µtM
d ‖fn − f‖0 = µ0M

d lim
n
‖fn − f‖ = 0 . (2.9)

By Cauchy–Schwarz inequality, uniform boundedness of H : M +
b → Rd, and (b),

lim
n

sup
t∈[0,T ]

∣∣∣∣∫ t

0

µs
(
∇fn ·H(µs)

)
ds−

∫ t

0

µs
(
h ·H(µs)

)
ds

∣∣∣∣ ≤
≤ lim

n
sup
t∈[0,T ]

∫ t

0

µs |(∇fn − h) ·H(µs)|ds

≤ ‖H‖0 lim
n

∫ T

0

µs |∇fn − h|ds = 0 . (2.10)

Combining (2.8), (2.9), and (2.10) shows (2.7) and thus the assertion. �

We are now ready to prove our main result.

Proof of Theorem 1.2. Fix µ0 ∈M +
b and set c :=µ0M

d > 0. We argue by contradiction
that there exists a solution (µt)t to (1.1) starting at µ0.

Let g be the function constructed in Lemma 2.2 and, for every ε > 0, define gε : M1 →
R as a regularization of g satisfying: (ag) gε ∈ C2

b and gε converges to g uniformly on M1

as ε ↓ 0; (bg) g
′
ε converges to g′ ≡ 1 locally uniformly away from Σg as ε ↓ 0; (cg) |g′ε| ≤ 1

everywhere on M1. Finally, define fε : Md → R and f : Md → R by fε(x) := gε(x1)

and f(x) := g(x1) respectively, where x = (x1, . . . , xd) ∈Md. Now, let ε := 1/n and put, for
simplicity of notation, fn := fεn From (ag)-(cg) above we deduce the analogous properties
for fn and f , that is

(af ) fn ∈ C2
b converges to f uniformly on Md as n→∞;

(bf ) ∇fn converges to ∇f locally uniformly away from Σf as n→∞;

(cf ) |∇fn| ≤ 1 everywhere on Md.

Step 1 We start by verifying the assumptions in Proposition 2.3. The singular set Σf
of f satisfies Σf = Σg ×Md−1. Thus, for every t ∈ [0, T ],

E

∫ t

0

µsΣf ds ≤ E

∫ T

0

µsΣf ds = E

∫ T

0

µs(Σg ×Md−1) ds = µ∗TΣg = 0

by Lemma 2.2(ii), and therefore∫ t

0

µsΣf ds = 0 a.s. , t ∈ [0, T ] . (2.11)

Respectively: by (2.11); since (∇f)(x) = g′ε(x1) = 1 on Σc
f by definition of f and

Lemma 2.2(iii); and by Lemma 2.1,∫ t

0

µs |∇f |2 ds =

∫ t

0

µs
∣∣
Σc

f

|∇f |2 ds =

∫ t

0

µs1ds = c t a.s. , t ∈ [0, T ] , (2.12)
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which shows in particular that the integral in the left-hand side of (2.12) is well-defined
for every t ∈ [0, T ] and thus that

µs |∇f |2 = µs1 is a.s. well-defined for a.e. s ∈ [0, T ] .

This shows that in Proposition 2.3 we may choose h = ∇f .

Fix s ∈ [0, T ]. Since µs is a.s. a finite measure, by the convergence in (bf ) and
Dominated Convergence in L1(µs) because of (cf ),

lim
n→∞

∫
|∇fn −∇f |dµs = 0 a.s. , for a.e. s ∈ [0, T ] . (2.13)

By (cf ) and Lemma 2.1,

µs |∇fn −∇f | ≤ 2µs1 = 2c a.s. , for a.e. s ∈ [0, T ] , n ∈ N .

Thus, the function s 7→ µs |∇fε −∇f | is a.s. L 1-essentially bounded on [0, T ] uniformly
in n. By the convergence in (2.13) for a.e. s ∈ [0, T ] and Dominated Convergence
in L1([0, T ]) with dominating function 2c ∈ L1([0, T ]),

lim
n→∞

∫ T

0

µs |∇fn −∇f |ds = 0 a.s. (2.14)

Note that (af ) verifies the assumption in Proposition 2.3(a), while (2.14) verifies
Proposition 2.3(b).

Step 2 Applying Proposition 2.3 with f as above and h ≡ ∇f , the processB• := (Bt)t∈[0,T ]

with

Bt :=µtf − µ0f −
∫ t

0

µs
(
∇f ·H(µs)

)
ds , t ∈ [0, T ] ,

is well-defined and a continuous martingale w.r.t. F• with quadratic variation

[B]t =

∫ t

0

µs |∇f |2 ds = c t , t ∈ [0, T ] .

By Lévy’s characterization, the process W• := (Wt)t∈[0,T ] with Wt :=Bt/c, is a standard

one-dimensional Brownian motion. Note that c :=µ0(Md) > 0 is F0-measurable, therefore
it is independent ofW• since the latter is an F•-Brownian motion, see e.g. [19, Prob. 2.5.5,
p. 73]. As a consequence, the set

E := {BT < −c ‖H‖0 T}

has positive P-probability.

On the one hand, on the set of positive probability E,

µT f =

∫ T

0

µs
(
∇f ·H(µs)

)
ds+BT

< ‖H‖0
∫ T

0

µs1ds− c ‖H‖0 T = 0 .

On the other hand, µT f is a.s. non-negative, since f is a non-negative function by the
choice of g and Lemma 2.2(i). Thus we have reached a contradiction, as desired. �

Page 6/9



Ill-posedness of the pure-noise Dean–Kawasaki equation

3 Possible extensions

Let us collect here some observations about possible extensions of our main result.
Solutions to the free Dean–Kawasaki equation have been constructed in [9, 10, 21] in

a far more general setting than Md, encompassing e.g. Riemannian manifolds, as well
as some ‘non-smooth spaces’. For the sake of simplicity, let us discuss the case of a
Riemannian manifold M with Riemannian metric g. A definition of solution to (1.1) is
given again in terms of the martingale problem in Definition 1.1, replacing the Laplacian
on Md with the Laplace–Beltrami operator ∆g on M , the gradient with the Riemannian
gradient ∇g induced by g, and the scalar product with the metric g itself.

We expect the non-existence result in Theorem 1.2 to be a structural property of the
equation, rather than a feature of the ambient space, and thus to extend to this more
general setting as well. Indeed, given a solution µ• up to time T , the proof depends
only on the construction of a function f : M → R+ satisfying |∇f | ≡ 1 on some Borel
set A ⊂M µt-negligible for L 1-a.e. t ∈ [0, T ]. To control this negligibility when M = Md,
we introduced the measure µ∗T in (2.2) as the time average of the marginal of µ• on M1

with respect to the projection onto the first coordinate. On a general manifold, this can
be done by choosing µ∗T as the time average of the marginal of µ• on R+

0 with respect to
the projection onto the radial coordinate in a spherical coordinate system centered at
any point o ∈M , viz.

µ∗T [0, r) :=

∫ T

0

µsBr(o) ds , T > 0 , r > 0 ,

where Br(o) is the ball in M of radius r > 0 and center o w.r.t. the intrinsic distance dg
on M induced by g. A function g : R+

0 → R+ may then be constructed from Lemma 2.2,
so that f(x) = g

(
dg(x, o)

)
has the desired properties.

For a general manifold M , the argumentation above is not sufficient to prove the
conclusion, since we also need to show that µs vanishes on the singular set Σf ⊂M of f ,
and this set includes the cut locus of the point o, which is generally ‘large’ and wildly
dependent on o. However, the argument can be made rigorous on manifolds with only
one chart, (including Euclidean spaces, hyperbolic spaces, etc.) in which the cut locus of
any o is empty, and on standard spheres, in which the cut locus of o exactly consists of
its antipodal point.
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