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Abstract

This is the first of two complementary works in which we analyze the connected com-
ponents of the degree-corrected stochastic block model (DCSBM). Our model is a random
graph with an underlying community structure and degree in-homogeneity. It belongs to a
class of non-rank one models. The scaling limit of connected component sizes in the near-
critical regime, obtained by Konarovskyi and Limic (2021) for a subfamily of DCSBM, is
non-trivially different (although related to) the standard eternal multiplicative coalescent
of Aldous (1997).

The Aldous (1997) excursion representation combined with weak convergence ap-
proach to the scaling limits of connected components of random graphs proved to be much
more difficult (and therefore rare) for non rank-one models. In this work we show how
to build a random field encoding for the connected component structure of DCSBM, in
part relying on the theory of Chaumont and Marolleau (2020). We then show how one
can, under additional assumptions, reformulate the minimization problem stated in terms
of multidimensional first hitting times into an equivalent minimization problem stated for a
single real-valued stochastic process. This reformulation relies on a novel composition-like
operator on pairs of compatible non-decreasing rcll functions, which might be of indepen-
dent interest.
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1 Introduction
Over the past several decades, random graphs have become an indispensable tool for studying
real-world networks [38, Chapter 1]. Real-world networks are frequently both large and com-
plicated so that a precise description is near impossible in practice. In an attempt to understand
finer properties of these large networks, one typically constructs a family of finite random graph
models, and studies various structural properties of these random graphs as n gets large.

A fundamental question in this area is to understand the conditions under which the above
large random graphs contain a connected component of size comparable to the size of the
entire network. Ever since the fundamental work of Erdős and Rényi, one approaches this
problem as follows. Let us denote by Gn the nth element of our sequence of random graphs.
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The edge density of Gn is parametrized by θ ≥ 0 (for example, as in bond percolation), so
that our growing family of random graph families is ((Gθ

n, θ ∈ [0, 1]);n ≥ 1). The aim is
to identify the “giant component” phase transition, or more precisely, to find θc such that,
if θ > θc then the largest connected component of Gθ

n is of size Θ(n) with overwhelming
probability as n → ∞, and otherwise if θ < θc then largest connected component of Gθ

n is
of size o(n) with overwhelming probability as n → ∞. Understanding the structure of large
networks in the near-critical regime, is then naturally related to the problem of understanding
the connected components in the parameter window θ = θc ± εn, for some vanishing model-
dependent sequence (εn)n. Bollabás, Janson and Riordan in [12] identify the critical threshold
θc under rather general hypotheses on the random graph model, however they do not provide
any insight into the connected component structure within the (near)-critical window.

For the near-critical Erdős-Rényi random graph, the latter analysis was carried out al-
ready by Aldous in [4]. Aldous’ approach was based on the breadth-first walk encoding of
the connected components sizes, which can be summarized as follows: 1) the excursions of
the breadth-first walk above the past infimum encode useful information about the connected
components of the random graph, and 2) it is meaningful to take the limit as n → ∞ in this
coupling, which yields the scaling limit of the connected component sizes. This approach, to-
gether with the analysis of Aldous and Limic [5], has proven valuable for understanding the
critical window connected component structure for a number of related random graph models.
A far from complete list of papers using these ideas is [3, 10, 13, 20, 23, 24, 30, 33, 34, 36]. Un-
til now, this “encoding via a stochastic process” approach has proved successful for rank-one
models of random graphs. For this class of models the expected adjacency matrix is approxi-
mately a rank-one matrix, or equivalently, P(i ∼ j) ≈ ψ(i)ψ(j) for any pair of vertices (i, j),
where ψ is some model-dependent positive function.

It is not surprising that many complex (real-world) networks are believed not to be of rank-
one. Indeed, a fundamental problem in statistics and computer science is to meaningfully sep-
arate data into clusters which share certain important characteristics [28]. When the data is a
graph, this clustering involves partitioning of the vertex set V into blocks C1, C2, · · · , Cm for
some m ≥ 2, in such a way that the edge density within blocks is high, and the edge den-
sity of links transcending blocks is low (or alternatively, the edge density within blocks is low,
while the density of edges transcending blocks is high). A well-known random graph model
which exhibits non-trivial community structure (or equivalently, the expected adjacency matrix
of higher-rank) is the stochastic block model (SBM). The SBM with m blocks is a graph on
mn vertices where for each i ∈ [m] := {1, 2, · · · ,m} there are n vertices of type i, and where
an edge connects vertex v of type i and vertex u of type j with probability pi,j = pj,i, indepen-
dently over different pairs of vertices. This graph has become an important model for rigorous
analysis of network clustering algorithms. We refer an interested reader to the survey of Abbe
[1] for more information and precise statements on these theoretical results.

The second and the third author recently identified in [32] a new critical window for the
stochastic block model, and carried out the scaling limit analysis akin to that of [5]. The scaling
limit of [32] is the so called interacting multiplicative coalescent. The techniques used therein
do not include an explicit encoding of SBM via a random walk.

The main goal of this paper is to provide an excursion representation for SBM. Our encod-
ing is quite general as it extends, under certain additional assumptions, to the so-called degree-
corrected stochastic block model [31], which incorporates degree inhomogeneity among the
vertices of the same block. Our study relies on a novel (composition alike) operator on (pairs
of) real-valued functions on [0,∞). This construction is natural but somewhat technical, and it
is crucial for the scaling limit analysis. The scaling limit for the sizes of connected components
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of the degree-corrected stochastic block models will be exhibited in a forthcoming work [19].

2 Model and Results

2.1 Graphical Models
Denote by

ℓ2↓ =

{
x = (x1, x2, · · · ) : x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
j=1

x2j <∞
}
.

If w = (w1, w2, · · · , wN , 0, 0, · · · ) we say that w is has finite length, and also that N is the
length of w, which we write as len(w) = N . Consider some weight vector w = (w1, w2, · · · ) ∈
ℓ2↓ of finite length. Given any square summable vector x with non-negative entries, we write
ord(x) for the decreasing re-ordering of the entries of x.

We recall the inhomogeneous multiplicative random graph of [4, 5]. The graph G(w, q) is
a graph on len(w) vertices labeled by l ∈ [len(w)] where

P(l ∼ r in G(w, q)) = 1− exp(−qwlwr).

We interpret the value wl as the propensity of the vertex l to form edges. It is often called the
weight (or mass) of vertex l. A natural coupling of (G(w, q))q≥0 can be realized in a usual way
(typical for all percolation processes): let the edge between l and r appear according to a Pois-
son process with parameter/rate wlwr, independently over all l ̸= r. Note that in order to keep
track of the connected component structure only at a fixed time q, one can equivalently con-
struct the graph G(w, q) by attaching a Poisson (with mean qwlwr) number of edges between
vertex l, r. The original (continuous-time) graph is then obtained from this multi-graph by re-
moving any duplicate edges. The Erdős-Rényi (binomial) random graph G(n, p) is the special
case, where w = (1, 1, · · · , 1, 0, · · · ) with len(w) = n and q = − log(1− p).

The degree-corrected stochastic block model (DCSBM) can be constructed in a similar
fashion, see [31]. Here we fix m finite length vectors w1, · · · ,wm ∈ ℓ2↓, and a symmetric
m ×m matrix Q with non-negative real entries. Each vertex v is of the form v = (l, i), where
i ∈ [m] is its type (this means that v is an element of the ith block) and wi

l is its assigned
weight corresponding to the propensity of v to form edges. Let us denote by W the vector
(w1, · · · ,wm) ∈ (ℓ2↓)

m = ℓ2↓ × ℓ2↓ × · · · × ℓ2↓ listing all the propensities of all the vertices in a
type-wise increasing (and propensity-wise non-increasing) ordering. The random (multi-)graph
G(W, Q) is obtained after attaching Poi(Qi,jw

i
lw

j
r) many edges between each pair of vertices

(l, i) and (r, j), independently over different pairs. Since we are concerned here with the sizes
of connected components, all duplicate edges and all self-loops will be ignored.

The DCSBM has two kinds of parameters. Parameters of the first kind are the weight vectors
wi, which give rise to the degree inhomogeneity in the graph. The larger the value of wi

l , the
more neighbors will the corresponding vertex (l, i) have on the average. This is analogous to
the setting of the rank-one graph G(w, q). Parameters of the second kind are the entries of Q,
and they determine the block structure of the graph. The larger the value ofQi,j , the more likely
will an edge appear between a vertex of type i and a vertex of type j. In fact, the matrix Q is a
multi-dimensional analogue of time q in the rank-one model.

Remark 2.1. One could incorporate the information on the diagonal of Q within the weight
data. More precisely, define WQ = (

√
Q1,1w

1, · · · ,
√
Qm,mw

m) and Q′
i,j := Qi,j/

√
Qi,iQj,j .
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In this wayQ′ has 1 on the diagonal, and moreover it is easy to see that the open edges (i.e. con-
nections) in G(W, Q) and in G(WQ, Q′) have the same law. Indeed, in the latter model, the
scaling of the block weights cancels out the scaling of the m-dimensional time. Note, however,
that in this coupling (visually) the same connected components of G(W, Q) and G(WQ, Q′)
have completely different weights.

2.2 First hitting times of fields
An encoding of the connected components weights of the naturally coupled family of random
graphs (G(w, q); q > 0) is due to Limic [33]. This construction relies on len(w) independent
exponential random variables (ξl)l∈[len(w)], where ξl ∼ Exp(wl). Here and below Exp(c) de-
notes an exponential random variable with rate c (mean 1

c
). If A is a collection of vertices in

G(w, q), define the weight of A to be
∑

l∈Awl. For each q, denote by Mq(1) ≥ Mq(2) ≥ · · ·
the weights of the connected components of G(w, q), listed in non-increasing order.

For q > 0, let Xq ≡ Xq,w = (Xq(t); t ≥ 0) denote the random walk-like process

Xq(t) = −t+
len(w)∑
l=1

wl1[ 1
q
ξl≤t]. (2.1)

For y ≥ 0, let T q(y) = inf{t : Xq(t−) = −y} ≡ inf{t : Xq(t−) ≤ −y} and denote by
Y q
1 < Y q

2 < · · · the successive (finitely many) jump times of T q viewed as a process in y.
A key result of [33] is its Proposition 5, which states (in a slightly different language) that
the processes (ord(T q(Yl+) − T q(Yl); l ≥ 1))q>0 and (Mq(1),Mq(2), · · · )q>0 are identical in
law. The main advantage of this encoding over similarly looking ones in [4, 5], and various
analogues constructed in the meantime, is that it works on the level of processes. A different
full encoding for connected component sizes of random graphs with (or without) deletion was
invented by Martin and Ráth in [34].

It was observed already in [4, 5] that, for each fixed q, the walk-based ordered encoding
(T q(Yl+)−T q(Yl); l ≥ 1) is distributed as a size-biased copy of ord(T q(Yl+)−T q(Yl); l ≥ 1).
Let (M ∗(l); l ≥ 1) be a size-biased reordering of (M (l); l ≥ 1), where the size of M (l) is
equal to its weight.

Corollary 2.2 (see also [33, Proposition 1]). For each q > 0

(T q(Yl+)− T q(Yl); l ≥ 1)
d
= (M ∗(l); l ≥ 1) .

Proof. Since ord(T q(Yl+) − T q(Yl); l ≥ 1) and (Mq(1),Mq(2), · · · ) are equally distributed,
the same is true for their respective size (weight)-biased lists.

We now present a generalization of this representation, based on several ideas in the random
tree and branching process literature [6, 15, 16]. The set-up is as follows: recall W, Q fixed
above, and provided that wi

l > 0, we let ξil have Exp(wi
l) distribution, where all the variables in

the family (ξil )i∈[m],l≥1,wi
l>0 are independent. When we refer to a vertex v = (l, i) we will often

simply write ξv in place of ξil . For all i, j ∈ [m], let us define

Ri,j := Qi,j/Qi,i, (2.2)
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and so that in particular Ri,i ≡ 1. In addition, for each i, j ∈ [m] and all t ≥ 0 we define

Xi,j(t) =


−t+

len(wj)∑
l=1

wj
l 1[ 1

Qj,j
ξjl ≤t], if i = j,

Ri,j

len(wj)∑
l=1

wj
l 1[ 1

Qj,j
ξjl ≤t], if i ̸= j.

(2.3)

The processes Xj = (X1,j, · · · , Xm,j), j ∈ [m], clearly depend on both Q and W; however,
in the sequel this fact will be mostly suppressed from the notation. Observe that the vector-
valued processesXj are independent over j. Also observe that for each fixed j, the off-diagonal
processes depend deterministically on the diagonal (Xj,j(t); t ≥ 0). In particular, for any given
j ∈ [m], all the processes (Xi,j; i ∈ [m]) have simultaneous jumps.

In order to state and prove an analogue of Corollary 2.2, we need to define an analogue
of the first hitting times process (T q(y); y ≥ 0). Such processes were studied recently by
Chaumont and Marolleau in [16, 17] in the context of random fields. We now recall the setting
of [16, 17], as well as some of their results which are fundamental for the present study. Given
(deterministic) càdlàg functions xi,j for i, j ∈ [m] such that xi,j(0) = 0 for all i, j, and such
that xi,j is non-decreasing when i ̸= j and xi,i(t) − xi,i(t−) ≥ 0 for all t and i ∈ [m], let us
consider the following field

x(⃗t) = x(t1, · · · , tm) =
(

m∑
j=1

x1,j(tj), · · · ,
m∑
j=1

xm,j(tj)

)
. (2.4)

It is proved in [16] that for each y⃗ ∈ Rm
+ there exists a unique solution toxi(⃗t−) =

m∑
j=1

xi,j(tj−) = −yi, ∀i such that ti <∞, (2.5)

t⃗→ min.

Let us denote by

T(x; y⃗) = (T1(x; y⃗), T2(x; y⃗), · · · , Tm(x; y⃗)) ∈ [0,∞]m (2.6)

this unique minimal solution. The condition t⃗ → min means that any other solution t⃗′ to (2.5)
must be component-wise greater or equal to T(x; y⃗), or equivalently that Tj(x; y⃗) ≤ t′j for all
j ∈ [m] (which we also write as T(x; y⃗) ≤ t⃗′).

Remark 2.3. Observe that t⃗ = (∞,∞, · · · ,∞) is always a solution to the equation in (2.5).
As we will soon see, most of the random fields relevant for our present study will be such that
T(x; y⃗) takes finite values in Rm

+ , for all y⃗ ∈ Rm
+ almost surely.

In analogy to the deterministic setting, we now consider the Rm-valued and Rm
+ -indexed

field X = XW,Q = (X(⃗t); t⃗ ∈ Rm
+ ), defined by

X(⃗t) =

(
m∑
j=1

X1,j(tj), · · · ,
m∑
j=1

Xm,j(tj)

)
. (2.7)

By abuse of language we will henceforth refer to vectors t⃗ ∈ Rm
+ as “time”, or less-frequently

as “time-lines”.
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2.3 Random field encoding of DCSBM
Recall that W and Q are fixed as above. Our next goal is to encode the weights of the con-
nected components of the graph G = G(W, Q) in terms of its corresponding X. Let us list the
connected components C(1), C(2), · · · of G in some arbitrary (measurable) fixed way.

Recall that each vertex v in G is identified with (l, i) for some l ≥ 1 and i ∈ [m], where
i is the type of v, and l is the ranking of v’s propensity or weight (specified as wi

l) among all
the type i vertices in G. In forthcoming calculations it will often be convenient to write t(v)
to mean i, the type of v. We can therefore define the total weight of type j vertices in the rth
connected component C(r) of G by

Mj(r) :=
∑

l:(l,j)∈C(r)

wj
l .

To keep track of this information we use a family of m-dimensional random vectors

M⃗ (r) = (M1(r), · · · ,Mm(r)), r ≥ 1. (2.8)

We will encode the family (M⃗ (r); r ≥ 1) via the family of the first hitting times (T(x; y⃗); y⃗ ∈
L) along a line L ⊂ Rm

+ . More precisely, let us fix a vector ρ⃗ ∈ Rm
+ \ {⃗0} and consider the

half-line L = {ρ⃗y; y ≥ 0} in the direction of ρ⃗. Define the vector-valued process

T = Tρ⃗,W,Q = (T(y); y ≥ 0),

by letting

T(y) = T(X; ρ⃗y) = inf{t⃗ : Xi(⃗t−) = −ρiy, ∀i s.t. ti <∞}
= inf{t⃗ : X(⃗t−) = −ρ⃗y}.

(2.9)

Remark 2.4. For a fixed y, T(y) is analogous to the above deterministic minimizer T(x; ρ⃗y),
except that here we are (almost) sure that there is a finite random quantity S⃗y such that∑

j Xi,j(S⃗
y
j−) = −ρiy for each i ∈ [m], or equivalently, that Ti(X; ρ⃗y) <∞ almost surely for

each i ∈ [m] and all y ≥ 0. This is due to the fact that Xi,j remains bounded for all i ̸= j, while
Xi,i(t) −→ −∞ as t→ ∞.

It is easy to see that, with probability one, the process y 7→ T(y) is non-decreasing with left-
continuous paths. By the construction of the minimal solution T in the proof of [16] Lemma 2.3,
one can see that T(y) is a (multi-dimensional) stopping time with respect to the filtration gen-
erated by X. Furthermore, there are at most

∑m
j=1 len(wj) many jumps of the process T. This

is due to the construction (2.3)–(2.7) (in particular, there are len(wj) many jumps of Xj,j , for
each j ∈ [m]), joint with the fact that (in our discrete setting, analogously to the m = 1 setting)
to each jump time Y of T corresponds a random index J ∈ [m], and a unique jump of XJ,J

(on the J th timeline, say at time SJ(Y )) such that XJ,J starts an excursion at SJ(Y ). See also
Remark 2.7.

Definition 2.5. Let (∆⃗(r); r ≥ 1) denote the jump sizes of y 7→ T(y) listed in chronological
order.

Recall the matrix R defined in (2.2), and recall that (C(r); r ≥ 1) is an arbitrary ordering of
the connected components of G. Recall that t(v) is the type of vertex v. Given a set of vertices
A of G, let us assign to A its (ρ⃗, Q)-scaled mass, or scaled mass for short, as

S (A) ≡ S (A; ρ⃗, Q) :=
∑
v∈A

ρt(v)Qt(v),t(v)wv. (2.10)
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Then, for each r, the scaled mass of C(r) simplifies to

S (C(r)) ≡ S (C(r); ρ⃗, Q) :=
m∑
i=1

ρiQi,iMi(r), (2.11)

where M⃗ (r) is from (2.8). It may be more accurate to write S (V (C(r))) as this quantity
depends on the vertex set V (C(r)) for the component C(r), but we think this is too cumbersome
of notation. Let (C∗(r); r ≥ 1) denote a size-biased reordering of {C(r) : S (C(r)) > 0} by
their scaled mass. For each r, we denote by M⃗ ∗(r) the corresponding weight vector of the
component C∗(r). The following is our first main result.

Theorem 2.6. Let W, Q be fixed as above. Then, for each ρ⃗ ∈ Rm
+ \ {⃗0}, we have the identity(

∆⃗(r); r ≥ 1
)

d
=
(
RM⃗ ∗(r); r ≥ 1

)
. (2.12)

Its proof is postponed until Section 4.5.
Let us define

[m]ρ := {k ∈ [m] : ρk > 0}. (2.13)

Given a set A of vertices, and a set I ⊂ [m] of indices we abuse notation and write

A ∩ I ≡ A ∩ (N× I) = {v ∈ A : t(v) ∈ I}. (2.14)

Remark 2.7. On the event {C(l) ∩ [m]ρ = ∅}, neither C(l) nor its corresponding vector M⃗ (l)
appear in the size-biased list above. The encoding via field X cannot access any such C(l) (since
the exploration is done only in the direction of ρ⃗), and therefore the scaled mass of C(l) will not
appear in the list on the RHS of (2.12). Concerning the list on the LHS of (2.12), we wish to
point out that. as the proof of Theorem 2.6 will show, the random process T(y) can be written
as

ρ⃗y +
∑
x<y

(T(x+)−T(x)) = ρ⃗y +
∑
r∈Jy

∆⃗(r), y ≥ 0,

for some finite and uniformly bounded set of jumps Jy. Therefore, Tj(+∞) := limy→∞ Tj(y)
and it is almost surely finite, if and only if, ρj = 0. If ρj = 0, then the time Tj(+∞) may (and
typically does) appear before some of the excursions (above past infimum) of the process Xj,j

even begin. The information contained in Xj,j on [Tj(+∞),+∞), for all j ∈ [m] \ [m]ρ⃗, could
probably be used to reconstruct the connected component sizes of the DCSBM intersected with
[m]\[m]ρ, however it is not clear if this extra effort would bring any significant benefits. We will
exhibit an encoding of the connected component sizes in each probe direction ρ⃗. By varying ρ⃗,
one can access all the connected components of the DCSBM.

2.4 From fields to processes
Theorem 2.6 is a random field generalization of Corollary 2.2. Let us first consider a restatement
of Corollary 2.2 in terms of the excursions of the process Xq.

Recall that if f : [0,∞) → R is a càdlàg function, an interval (l, r) is called an excursion
(above past infima) interval if

inf
t≤l

f(t) = inf
t≤r

f(t) and f(s−) > inf
t≤r

f(t) for all s ∈ (l, r).

For a function f , we will denote by E(f) the collection of excursions (above past infima), and
by L(f) the multiset of excursion lengths {r − l : (l, r) ∈ E(f)}. Finally, we let
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L↓(f) be the non-increasing rearrangement of L(f),
provided that it is well-defined (if and only if there are at most finitely many excursions of f
longer than δ, for each δ > 0).

As discussed in the introduction, the pioneering work of Aldous [4] was a base to a number
of studies. With a representation analogous to Corollary 2.2 and a corresponding scaling limit
for the sequence of appropriately rescaled process (Xq)q one can often appeal to a quite general
theory [4, Lemma 7 and Proposition 15] to conclude relatively easily that the rescaled compo-
nent weights (of the random graph under consideration) converge in distribution to a random
element of ℓ2↓ as the size of the graph diverges. This general approach by Aldous [4] is based on
relating the excursions of the prelimiting processes with excursions of the limiting stochastic
process. While the construction of the first hitting times T(y) in [16] is a very useful tool for
our analysis, it does not give much insight into the behaviour of the field “between” T(y) and
T(y+). So it is not clear what a reasonable definition of an excursion would even be in the
present context.

A major contribution of this paper is a construction of a single curve γ⃗ : R+ → Rm
+ which

combines the information on the m time-lines in an appropriate way so that the first hitting
times of the Rm

+ -indexed and Rm-valued field match the first hitting times of a R+-indexed
real-valued process (as it turns out, there are several such processes). A precise statement is the
following theorem. (We prove this result under weaker assumptions, which are cumbersome to
state at this point.)

Theorem 2.8. Suppose that x is a field as in (2.4), infs≤t xi,i(s) < 0 for all t > 0 and
lim inft xi,i(t) = −∞ and that there exists some vector ρ⃗ = (ρ1, . . . , ρm) ∈ (0,∞)m such
that for each l ∈ [m] and all i, j ̸= l

xi,l(t)

ρi
=
xj,l(t)

ρj
for all t ≥ 0. (2.15)

Let T(y) = T(x; ρ⃗y) be the first hitting time of level −ρ⃗y for x. Then, there exists a Lipschitz
curve γ⃗ : R+ → Rm

+ with non-decreasing coordinates such that

(1) ∥γ⃗(s)∥1 = s for every s ≥ 0.

Moreover, for all y ≥ 0, if T(y) ∈ Rm
+ then

(2) γ⃗ (∥T(y)∥1) = T(y) and

(3) for all i ∈ [m]

inf

{
s ≥ 0 :

m∑
j=1

xi,j ◦ γj(s−) = −ρiy
}

= ∥T(y)∥1.

An immediate consequence of Theorems 2.6 and 2.8 is the following result.

Theorem 2.9. Let W,Q,R and X be as in Theorem 2.6, and let G(W, Q) be the corresponding
DCSBM. Suppose that, in addition,

Ri,j =
Qi,j

Qj,j

= ρiνj, for all i ̸= j, (2.16)

for some vectors ρ⃗, ν⃗ ∈ (0,∞)m. Recall that (M⃗ (r); r ≥ 1) are the vector-valued component
weights of G(W, Q) arranged in some arbitrary order. Then there exists a vector valued curve
γ⃗ with non-decreasing coordinates such that
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1. The ordered excursion lengths of
∑m

j=1Xi,j ◦ γj(t) are equal in law to the reording of
(∥RM⃗ (r)∥1; r ≥ 1); i.e.

L↓

(
m∑
j=1

Xi,j ◦ γj
)

d
= ORD

(
∥RM⃗ (r)∥1; r ≥ 1

)
.

2. If ((lp, rp); p ≥ 1) are the excursion intervals of
∑m

j=1Xi,j ◦γj arranged chronologically,
then

(γ⃗(rp)− γ⃗(lp); p ≥ 1)
d
=
(
RM⃗ ∗(p); p ≥ 1

)
.

2.5 Comments on models with condition (2.16)

2.5.1 Restrictions with few blocks

Let us begin by noting that whenever there are two blocks (i.e. m = 2) the condition (2.16) is
always true provided that Qi,j > 0 for all i, j ∈ [2]. In fact, (2.15) in Theorem 2.8 is always
true in the case where there are just two types.

Assumption (2.16) starts to become more interesting in the case where m = 3. By first
examining (2.15) in Theorem 2.8 as well as the form of the field X in (2.3), we see that for any
Q we can set

ρ1 =
Q1,2Q1,3

Q1,1

ρ2 =
Q2,1Q2,3

Q2,2

ρ3 =
Q3,1Q3,2

Q3,3

and

ν1 =
1

Q2,3

ν2 =
1

Q1,3

ν3 =
1

Q1,2

.

Indeed, looking at distinct i, j, k ∈ [3] we have

ρiνj =
Qi,jQi,k

Qi,i

· 1

Qi,k

=
Qi,j

Qi,i

= Ri,j.

In particular, provided that Q is a symmetric matrix with strictly positive entries Theorem 2.9
is always applicable for particular (and explicit) choices of ρ⃗ and ν⃗.

A simple dimension counting argument implies that (2.16) can not be satisfied in great
generality for m > 3. Indeed, the collection of symmetric m × m matrices Q with positive
entries forms a

(
m+1
2

)
dimensional manifold, while the collection of matrices Q that satisfy

(2.16) is only of dimension 3m (m for the diagonal entries of Q and m for each the vectors
ρ⃗, ν⃗).

2.5.2 Link with [32]

Condition (2.15) is equivalent to (2.16) in our stochastic setting, and we furthermore have an
interesting probabilistic interpretation.

Lemma 2.10. The symmetric matrix Q and the vector ρ⃗ ∈ (0,∞)m satisfy (2.16) if and only if
there exist qi > 0, i ∈ [m] ∪ {0}, such that vertices (l, i) and (k, j) of G(W, Q) are connected
by an edge with probability 1 − e−q0ρiw

i
lρjw

j
k if i ̸= j and with probability 1 − e−qiρiw

i
lρjw

j
k if

i = j.
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Proof. Since Q is a symmetric matrix, due to (2.16) we have for all i ̸= j

Qj,jρiνj = Qi,iρjνi ⇐⇒ Qj,jνj
ρj

=
Qi,iνi
ρi

.

Let q0 := Q1,1ν1/ρ1 = Qj,jνj/ρj , j ∈ [m], and qi := Qi,i/ρ
2
i , j ∈ [m]. It is straight-forward to

see that Qi,j = q0ρiρj for i ̸= j and Qi,i = qiρ
2
i .

The above lemma gives a connection with the setting of [32]. The class of models satisfying
(2.16) includes the SBMs analyzed in [32], but it is much larger since it allows for varying intra-
block connection probabilities over types. This connection will be important in our sequel paper
[19].

2.5.3 An epidemiological interpretation

Let us now describe possible epidemiological interpretation. We have a population of N =∑m
j=1 len(w

j) many individuals segmented into m many sub-types. Each individual (l, j) of
type j has some propensity wj

l of both catching or transmitting a disease to their neighbors.
The factor νj represents the propensity of a type j individual to transmit the disease to others,
for example by not taking preventative measures to stop the spread of the disease. Finally, there
is some likelihood that type j individuals come into contact with type i individuals which is
represented by

ρ̃iρ̃j
ρ̃i + ρ̃j

where ρ̃i = Qi,iρi.

To model a disease spreading through the population we can use a direct graph where a
direct edge from u to v means individual u infected individual v. Moreover our graphs is built
by independently adding an edge from (l, i) to (r, j) with probability

1− e
−wi

lw
j
r

ρ̃iρ̃j
ρ̃i+ρ̃j

νj
, ∀i ̸= j.

Forgetting direction of the edges, we see that an (undirected) edge between (i, l) and (j, r)
appears with the probability 1− e−p, where

p = wi
lw

j
r

(
ρ̃iρ̃j
ρ̃i + ρ̃j

νj +
ρ̃j ρ̃i
ρ̃i + ρ̃j

νi

)
= wi

lw
j
r

(
Qij ρ̃j
ρ̃i + ρ̃j

+
Qjiρ̃i
ρ̃i + ρ̃j

)
= wi

lw
j
rQij ∀i ̸= j.

Thus the (weakly) connected components in this disease model are equal in law to the con-
nected components that Theorem 2.9 can analyze.

3 Discussion

3.1 Past and related work
To the best of our knowledge, the “stochastic process encoding” for analyzing the connected
components of critical random graphs which are not rank-1 appeared until now only a few
times in the literature. The first such work is by Dembo, Levit and Vadlamani [22] on the so-
called quantum Erdős-Rényi (QER) random graph. In this model, each vertex in the standard
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Erdős-Rényi graph is replaced by a copy of a circle S1 cut into arcs according to a Poisson
process, and these arcs then become the vertices of the QER random graph. Edges are included
subsequently according to another independent Poisson process.

A more closely related model to ours appears in the works of Federico [27] and Wang [39]
on the near-critical bipartite Erdős-Rényi random graph. While the actual explorations used in
these papers differ from ours, their encodings correspond to a join of two separate explorations
(one explores the left-vertex set, and the other the right-vertex set of the bipartite graph) into
a single stochastic process, which can be analyzed via weak convergence techniques. As men-
tioned above in Section 2.5.1, our encoding is completely general in the rank-2 case, whenever
Qi,j > 0 for all i, j. Therefore our encoding does not technically cover the bipartite case where
Qi,i = 0 for both i and so we cannot encode the graphs studied by [27, 39]. However, by taking
the intra-block connection probabilities sufficiently small and using the result of Janson [29,
Corollary 2.12], one can see that the bipartite ER graph is asymptotically equivalent to a model
with Qi,i > 0 and therefore one we can encode. See also [38, Section 6.7]. This approach is
taken by DC in [18] to analyze the general rank-2 multiplicative random graphs.

A different approach has been quite successful for analyzing other classes of non-rank-
1 random graphs. A general method for proving that the connected components of certain
critical random graphs, viewed as metric measure spaces, lie in the basin of attraction of the
continuum limit of critical Erdős-Rényi random graphs of Addario-Berry et al. [2, 3], was
developed by Bhamidi et al. in [9]. Roughly speaking, this method consists in showing that the
barely subcritical random graph satisfies certain asymptotic properties (this gives the “blobs”
of [9]), and that the evolution of the model from the barely subcritical to the critical regime
is approximately that of the Aldous standard multiplicative coalescent [4] (giving the “blob-
level superstructure” of [9]) and converge to the continuum random graph [10]. This program
has more recently enabled Blanc-Renaudie et al. [11] (resp. Bhamidi et al. [7]) to prove that the
connected components of the near-critical percolation on the d-dimensional hypercube (resp. on
a graph converging to an L3-graphon) converge to the continuum random graph of [2, 3]. It is
not likely that this approach would apply in our setting, which is more closely related to the
restricted multiplicative merging and the interacting eternal multiplicative coalescents of [32],
than to the Aldous standard multiplicative coalescent.

In addition to the aforementioned papers, several works used exploration processes and
their related height processes (constructed by Duquesne and Le Gall in [25]) for analyzing
scaling limits of multi-type Galton-Watson trees. In [35], Miermont introduces a “reduction of
types” argument to show that (modulo some scaling) the height process of a critical multitype
Galton-Watson forest with finite variance converges to a reflected Brownian motion (which
also encodes the limit for a single type Galton-Watson forest). This result was generalized in
the case of offspring distributions in the domain of attraction of an α-stable random variable by
Berzunza [8], and in the case of infinitely many types by de Raphélis [21].

3.2 Future work
As mentioned in the Introduction, in this report we initiate our study of the degree corrected
stochastic block model, which is continued in our work in progress [19]. In this paper we lay
out the encoding of the graph model via a random field, and (under additional assumptions)
develop a technique for transforming the field encoding into an encoding by a conventional
real-valued stochastic process.

Our subsequent work [19] is concerned with scaling limits. Define σr(x) :=
∑∞

p=1 x
r
p.

More precisely, we study the behaviour of the sequence of graphs G(W(n), Q(n)), as n → ∞,
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under the following asymptotic conditions on W = W(n) and Q = Q(n): there exist sequences
0 < an → 0, ρ⃗(n) → ρ⃗ ∈ (0,∞)m, ν⃗(n) → ν⃗ ∈ (0,∞)m, and for each i ∈ [m] there exist
αi > 0, βi ≥ 0, αi, βi, λi ∈ R, and ci = (ci,1, ci,2, · · · ) ∈ ℓ3↓, such that for each i ∈ [m] and
j ̸= i

w
(n),i
p

σ2(w(n),i)
→ ci,p, and σ2(w

(n),i) → 0, (3.1)

σ3(w
(n),i)

σ2(w(n),i)3
→ βi + σ3(ci), where βi > 0 or σ2(ci) = +∞, (3.2)

σ2(w
(n),i)

an
→ αi, and

R
(n)
i,j

an
=

Q
(n)
i,j

anQ
(n)
j,j

=
ρ
(n)
i ν

(n)
j

an
, (3.3)

and in addition Q
(n)
i,i =

1

σ2(w(n),i)
+ λi + o(1). (3.4)

Hypotheses (3.1)-(3.2) and (3.4) are the well-known conditions arising from [5]. Informally,
the left-hand side of (3.3) guarantees that the weights of all the type i vertices are roughly of
the same order, while the right-hand side is a technical condition which allows us to apply
the results obtained in Sections 5 and 6 of the present work. One can also check that these
assumptions are the natural inhomogeneous generalizations of [32].

From hypotheses (3.1)–(3.4) (without using the RHS in (3.3)) it is not hard (applying results
from [5, 33]) to derive the scaling limit for each of the processes X(n)

k,i in (2.3), and moreover
the joint scaling limit for the matrix-valued process (Xi,j)i,j∈[m]. In addition, we already ob-
tained an encoding of the finite graph, so one might think that the scaling limit theorem for
our DCSBM model would be a standard extension of [4, 5]. However, we face several non-
trivial technical obstacles when passing from the random fields X(n) to the stochastic processes∑m

i=1X
(n)
k,i ◦ γ(n)i (t), k ∈ [m]. Without going into details, here we give an indication of our

approach developed in [19].

• Given a deterministic sequence of fields x(n) = (x
(n)
i,j )i,j∈[m], n ≥ 1, converging to the

field x, where each x
(n) satisfies the hypotheses of Theorem 2.8, we establish conver-

gence, under appropriate assumptions, for the sequence of curves γ⃗(n) (constructed via
Theorem 2.8).

• Since there is no total order on the space of Rm
+ -valued vectors, we construct a Polish

space ℓ̃2,m, which is an analog of ℓ2↓ for sequences of vectors with square summable
norms. This construction is analogous to the construction of the space of graphons [14].

• We establish tightness in ℓ̃2,m for the sequence of vector-valued connected component
weights of G(W(n), Q(n)), n ≥ 1.

• We improve on the work of Dhara et al. [23], by weakening the conditions on the limit
of encoding processes guaranteeing the convergence of the corresponding sequence of
excursion length vectors.

• We show that the paths t 7→ ∑m
i=1X

(∞)
k,i ◦ γ(∞)

i (t), where X(∞)
k,i is the scaling limit of

X
(n)
k,i , for all k, i ∈ [m], satisfy the above conditions.

In Section 4, we introduce two explorations of the DCSBM. The first Exploration 4.1 is via
the random field Xi,j from (2.3), and the second one uses the random graph defining data. We
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prove in Proposition 4.3 that these two explorations are equivalent, and soon after we prove
Theorem 2.6.

In Section 5, we recall and expand on various elementary properties of the multi-dimensional
first hitting times of [16] for deterministic fields x. We then analyze these first hitting times
whenever the field x is sufficiently smooth, and prove Theorem 2.8 in this special case. This
analysis relies on several properties of homeomorphic inverses which fail in general.

In order to overcome this difficulty, in Section 6.1 we are lead to introducing a novel
composition-like operator ◦̃ , which has a remarkably good behaviour with respect to taking
generalized inverses. For example, if g is an unbounded non-decreasing rcll function with left
limits, and if g is strictly increasing at 0 in addition, then g−1 ◦̃ g = g ◦̃ g−1 = id, where g−1

is the right-continuous generalized inverse of g. It is easy to see that the above identity fails in
general (see also examples in Section 6.1)if ◦̃ is replaced by ◦.

Theorem 2.8 is proved in full generality in Section 6.2.

4 Breadth-first walk
Fix W = (w1,w2, · · · ,wm), a collection of m finite length vectors wi ∈ ℓ2↓. Furthermore
fix an m ×m symmetric matrix Q = (Qi,j; i, j ∈ [m]) with strictly positive entries along the
diagonal and non-negative off-diagonal entries. All the processes considered in this section will
depend on W and Q, but this will be mostly suppressed from the notation.

Let
R⃗j = (R1,j, · · · , Rm,j)

T ∈ Rm
+ , (4.1)

so that the ith coordinate of R⃗j is Ri,j .

4.1 Two Explorations
The exploration we construct will involve m time-lines corresponding to m different coordi-
nates (or types).

We will use the stochastic processesXi,j in (2.3) to construct the exploration. We keep track
of two sequences of sets (Uk)k, (U∗

k )k of unexplored vertices. The initial set U0 consists of all the
vertices U0 = {(l, i) : l ≤ len(wi), i ∈ [m]}. At step k we maintain two stacks Ak, A∗

k of active
vertices. The initial stack A0 = () is empty. In addition we keep track of the set of dead vertices,
which we denote by Dk in step k. A given vertex needs to be active in order to become dead
in a later step, so D0 = () is empty as well. Recall that we write [m]ρ⃗ = {i ∈ [m] : ρi > 0},
and at step k denote by U ρ⃗

k all the unexplored vertices Uk ∩ N × [m]ρ⃗ with strictly positive
(Q, ρ⃗)-scaled mass.

We will inductively construct two sequences of m-dimensional stopping times S⃗∗
k =

(S∗
k;1, S

∗
k;2, · · · , S∗

k;m) where ∗ ∈ {L,R}, with respect to the filtration F (⃗t) generated by X.
We set S⃗R

0 = 0⃗. Let ζk denote the number of connected components that have been discovered
up-to step k. Note that ζ0 = 0. In the following exploration algorithm, we itemize the steps in
order to facilitate the understanding of the subsequent proof.

Exploration 4.1 (Field Exploration). Let k = 1.

(X0) While either Ak−1 ̸= () or U ρ⃗
k−1 ̸= ∅ do as follows:

(X1) Orientation:
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(a) On {Ak−1 = ()}∩{U ρ⃗
k−1 ̸= ∅} our exploration recorded all the vertices of the initial

ζk−1 components intersecting [m]ρ⃗, and there are still some unexplored vertices left
in V (G) ∩ [m]ρ⃗. The algorithm increments ζk = ζk−1 + 1, and defines

f(l, i; k) :=
ξil

ρiQi,i

−
SR
k−1;i

ρi
, (l, i) ∈ U ρ⃗

k−1,

and

ϖ(k) = (lk, ik) = argmin
(l,i)∈Uk−1

f(l, i; k), Yζk = min
(l,i)∈Uk−1

f(l, i; k).

Set A∗
k−1 = (ϖ(k)) and U∗

k−1 = Uk−1 \ {ϖ(k)}. We call ϖ(k) the root of the ζkth
component. For each i ∈ [m], set SL

k;i = SR
k−1;i+ρiYζk , and let S⃗R

k = S⃗L
k +wϖ(k)R⃗ik ,

where here and below ik is the above defined type of ϖ(k). We define Nk = k in
this case (the reasons for this will be clear soon).

(b) Otherwise on {Ak−1 ̸= ()} we have (by induction)

Ak−1 =
(
ϖ(k), · · · , ϖ(Nk)

)
,

for some Nk ≥ k. Set A∗
k−1 := Ak−1, U∗

k−1 = Uk−1, and ζk = ζk−1.

Note that Nk − k + 1 equals the length of the stack A∗
k−1 almost surely.

(X2) The (unexplored) neighbors of ϖ(k):

(a) The (newly discovered) neighbors of ϖ(k) are the vertices

Bk :=

{
(l, i) ∈ U∗

k−1 :
ξil
Qi,i

∈ [SL
k;i, S

R
k;i).

}
Let χ(k) = #Bk be the cardinality of Bk.

(b) On {χ(k) = 0} the algorithm jumps to (X3).

(c) Otherwise on {χ(k) > 0}, we use the jump times ξil/Qi,i ∈ [SL
k;i, S

R
k,i) to order the

elements of Bk as follows: Set

ϖ(Nk + 1), · · · , ϖ(Nk + χ(k)),

in the almost surely unique way such that i 7→ t(ϖ(Nk + i)) is non-decreasing on
{1, . . . , χ(k)}, and such that ties are broken according to the rule {t(ϖ(Nk + i)) =
t(ϖ(Nk + j)), i < j} ⊂ {ξϖ(Nk+i) < ξϖ(Nk+j)}, almost surely.

(d) For j = 1, 2, · · ·χ(k) write (temporarily) tj = t(ϖ(Nk + j)), and define

S⃗L
Nk+j = S⃗R

Nk+j−1 and S⃗R
Nk+j = S⃗L

Nk+j + wϖ(Nk+j)R⃗tj .

(X3) Update Sets and Stacks: Set Mk := Nk + χ(k), and

on {Mk > k} define

Ak :=
(
ϖ(k + 1), ϖ(k + 2), · · · , ϖ(Nk + χ(k))

)
, while

on {Mk = k} define Ak := ∅,
Uk := U∗

k−1 \ Bk,

Dk := Dk−1 ∪ {ϖ(k)}.
Increment k by 1 and go to step (X0).
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We now describe another exploration algorithm, which is directly linked to the DCSBM
graph. We use similar notation on purpose, except now every character will have an additional
“widetilde” mark in the superscript. For example, we write Ãk to denote the analogue of Ak,
and we define ζ̃0 = 0. Moreover, all the initial values of stacks Ũ0, Ã0, D̃0 are equal to the
values of their corresponding analogues in Exploration 4.1.

We will use several times in the sequel the following notation. Let F be a σ-field, and let
W ≥ 0 be a non-negative F-measurable random variable. Then

X|F ∼ Exp(W ),

means that the conditional law of X given F is exponential with rate W .

Exploration 4.2 (Graph Exploration). Let k = 1.

(G0) While either Ãk−1 ̸= () or Ũ ρ⃗
k−1 ̸= ∅ do as follows:

(G1) Orientation:

(a) On {Ãk−1 = ()} ∩ {Ũ ρ⃗
k−1 ̸= ∅} our exploration recorded all the vertices of the

initial ζ̃k−1 components of G which intersect [m]ρ⃗, and the unexplored part of G
non-trivially intersects [m]ρ⃗. The algorithm increments ζ̃k = ζ̃k−1 + 1, and samples
ϖ̃(k) = (l̃k, ĩk) from G \ Dk−1 according to

P
(
ϖ̃(k) = (l, i)

∣∣Hk

)
∝ ρiQi,iw

i
l1[(l,i)∈Ũk−1]

,

Ỹζ̃k |Hk ∼ Exp

 ∑
(l,i)∈G\Dk−1

ρiQi,iw
i
l

 ,

where Hk is the σ-field generated by the first k − 1 steps of the algorithm, and
where Ỹζ̃k and ϖ̃(k) are conditionally independent given Hk. Set Ã∗

k−1 = (ϖ̃(k))

and Ũ∗
k−1 = Ũk−1 \ {ϖ̃(k)}. Call ϖ̃(k) the root of the ζ̃kth component of G, and

define Ñk = k.
(b) Otherwise on {Ãk−1 ̸= ()} we have (by induction)

Ãk−1 =
(
ϖ̃(k), · · · , ϖ̃(Ñk)

)
,

for some Ñk ≥ k. Set Ã∗
k−1 := Ãk−1, Ũ∗

k−1 = Ũk−1, and ζ̃k = ζ̃k−1.

Note that Ñk − k + 1 equals the length of the stack Ã∗
k−1 almost surely.

(G2) The (unexplored) neighbors of ϖ̃(k):

(a) Let B̃k be the neighbors of ϖ̃(k) contained in Ũ∗
k−1. We set χ̃(k) = #B̃k and call it

the number of children of ϖ̃(k).
(b) On {χ̃(k) = 0} the algorithm jumps to (G3).

(c) Otherwise on {χ̃(k) > 0} the elements of B̃k are ordered as

ϖ̃(Ñk + 1), · · · , ϖ̃(Ñk + χ̃(k)),

first non-decreasingly with respect to their type, and for each i ∈ [m] using con-
ditionally and mutually independent (of all the information which our exploration
collected up to this point) auxiliary size-biasing (with respect to weight) of elements
of type i.
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(G3) Update Sets and Stacks: Set M̃k := Ñk + χ̃(k), and

on {M̃k > k} define

Ãk :=
(
ϖ̃(k + 1), ϖ̃(k + 2), · · · , ϖ̃(Ñk + χ̃(k))

)
, while

on {M̃k = k} define Ãk := ∅,
Ũk := Ũ∗

k−1 \ B̃k

D̃k := D̃k−1 ∪ {ϖ̃(k)}.

Increment k by 1 and go to step (G0).

Define ζ∞ := supk ζk and ζ̃∞ := supk ζ̃k. Note that both ζ∞ and ζ̃∞ are finite random
variables, and more importantly that the numbers of steps in the above while loops, respectively

K := inf{k : ζk = ζ∞} and K̃ := inf{k : ζ̃k = ζ̃∞},

are finite almost surely. Our key proposition is stated next.

Proposition 4.3. Explorations 4.1 and 4.2 are equal in law. More precisely,

(Ak,A∗
k,Uk,U∗

k , ζk, Yζk ,Bk, Nk : k ≤ K)
d
= (Ãk, Ã∗

k, Ũk, Ũ∗
k , ζ̃k, Ỹζ̃k , B̃k, Ñk : k ≤ K̃), (4.2)

and (ϖ(k) : k ≤ K)
d
= (ϖ̃(k) : k ≤ K̃) in particular.

We delay the proof until Section 4.3.

4.2 Preliminary Lemmas
Denote by ≤ (typically we write s⃗ ≤ t⃗) the standard coordinate-wise comparison partial order
on (−∞,∞]m. In complete analogy with the one-dimensional time setting, we can now define
filtrations (and related notions) indexed by Rm

+ ⊂ (−∞,∞]m.The reader is referred to [26,
Section 2.8] for concepts and results which we will typically use in the sequel without further
mention. In particular, the filtration F = (F (⃗t); t⃗ ∈ Rm

+ ) of our field X is defined by the
standard completion of σ

{
X(s⃗) : s⃗ ≤ t⃗

}
. It is clear that X is adapted to F . Furthermore it is

easy to see that X has right-continuous paths with respect to (the above m-dimensional partial
order in time and) the Euclidean topology on the state space Rm. We conclude that X is F -
progressively measurable.

We will need the following analogue of the m-dimensional strong Markov property.

Lemma 4.4. Let S⃗ be a F -stopping time such that P(S⃗ <∞) = 1. Then(
X(⃗t+ S⃗)− X(S⃗); t⃗ ∈ Rm

+

) ∣∣∣F (S⃗)
d
=
(
X̃(⃗t); t⃗ ∈ Rm

+

)
, (4.3)

where X̃ is the random field distributed as XW̃,Q with a random (and F (S⃗)-measurable) col-
lection of weights W̃ = (w̃1, · · · , w̃m), such that w̃j is the unique vector in ℓ2↓ of finite length
whose entries are the non-decreasingly ordered elements of {wj

l :
1

Qj,j
ξjl > Sj}.



18

Proof. The assumption is that S⃗ is a non-negative random vector such that {S⃗ ≤ t⃗} ∈ F (⃗t)

for all t⃗. The σ-field F (S⃗) consists of all measurable A such that A ∩ {S⃗ ≤ s⃗} ∈ F (s⃗) for all
s⃗ ≥ 0⃗.

As in the 1-dimensional setting, we have (S⃗,X(S⃗)) ∈ F (S⃗). We know that the field of
increments X(· + S⃗) − X(S⃗) depends deterministically on the residual exponential random
variables (ξjl −Qj,jSj)j∈[m],l≥1,wj

l>0,ξjl /Qj,j>Sj
in the same way that the original field X depends

on (ξjl )j∈[m],l≥1,wj
l>0. We need to check that, given F (S⃗), (ξjl − Qj,jSj)j∈[m],l≥1,wj

l>0,ξjl /Qj,j>Sj

are again independent exponentials, where ξjl − Qj,jSj has exponential (rate wj
l ) distribution.

For this we first note that {ξjl /Qj,j > Sj} ∈ F (S⃗), for each l ≥ 1 and j ∈ [m] such that
wj

l > 0, and moreover that F (S⃗) is in fact generated by S⃗ and the family of exponentials
(ξkl /Qk,k)k∈[m],l≥1,wk

l >0,ξkl /Qk,k≤Sj
which occur prior to S⃗. Therefore, on {ξjl /Qj,j > Sj}, we

have

P

(
ξjl
Qj,j

− Sj > u

∣∣∣∣∣F (S⃗)

)
= P

(
ξjl
Qj,j

− Sj > u

∣∣∣∣∣ S⃗,
(

ξkl
Qk,k

)
k∈[m],l≥1,wk

l >0,ξkl /Qk,k≤Sj

)
.

(4.4)
Due to the independence of the original family (ξjl )j∈[m],l≥1,wj

l>0 of exponentials, it is now

particularly easy to check that the RHS in (4.4) equals e−uQj,jw
j
l almost surely on {ξjl /Qj,j >

Sj}, provided that the stopping time S⃗ is a discrete random vector.
The previous paragraph can be generalized in an obvious way in order to prove conditional

independence (given F (S⃗)) of residual quantities ξjl
Qj,j

− Sj over all relevant l and j. Together

with the above discussion, this confirms (4.3) in the discrete S⃗ setting. Deriving

P

(
ξjl
Qj,j

− Sj > u

∣∣∣∣∣F (S⃗)

)
= e−uQj,jw

j
l a.s. (4.5)

and its joint distribution counterparts, or equivalently, deriving (4.3) for any stopping time S⃗ is
done in a standard way (by approximating S⃗ from above with a sequence of discrete stopping
times).

The following corollary is immediate and will also be used frequently in the sequel.

Corollary 4.5. Let S⃗ be an F -stopping time such that P(S⃗ < ∞) = 1. Then for any t⃗ ∈
(0,∞)m, and all i, j ∈ [m]

P(Xi,j(tj + Sj) = Xi,j((tj + Sj)−)) = 1.

More generally, suppose that U⃗ ∈ Rm
+ is an F (S⃗)-measurable random variable such that⋃

j {Xj,j(Sj) ̸= Xj,j(Sj−), Uj = 0} is an event of probability zero. Then, for all i, j ∈ [m]

P(Xi,j(Uj + Sj) = Xi,j((Uj + Sj)−)) = 1.

The following lemma is also easy.

Lemma 4.6. Suppose that S⃗ is an almost surely finite F -stopping time, U⃗ ∈ F (S⃗) is a random
variable such that P(U⃗ ≥ S⃗) = 1. Let (L, I) be an F (S⃗)-measurable random index. Then U⃗
and U⃗ + wI

LR⃗I1{ξIL/QI,I≤SI} are also F -stopping times.



19

The above lemma implies that in (X2)(c) all the random vectors S⃗L
Nk+j , where ∗ ∈ {L,R},

are stopping times provided that both S⃗L
Nk

and S⃗R
Nk

are stopping times. The proof of the next
lemma is again a consequence of Lemma 4.4.

Lemma 4.7. Let S⃗ be an F -stopping time, and let U = {(l, i) : ξil/Qi,i > Si}. Define

Z = min
(l,i)∈U

{
1

ρi

(
ξil
Qi,i

− Si

)}
.

Then S⃗ + Zρ⃗ is an F -stopping time, and furthermore

Z
∣∣F (S⃗) ∼ Exp

 ∑
(l,i)∈U

ρiQi,iw
i
l

 ,

and

P

(
argmin
(l,i)∈U

{
1

ρi

(
ξil
Qi,i

− Si

)}
= (l0, i0)

∣∣F (S⃗)

)
1[(l0,i0)∈U ] ∝ ρi0Qi0,i0w

i0
l0
1[(l0,i0)∈U ].

Proof. As already noted, we will apply Lemma 4.4. More precisely, it suffices to prove the
statements on the conditional law of Z and argmin(l,i)∈U

{
1
ρi

(
ξil
Qi,i

− Si

)}
in the setting where

P(S⃗ = 0⃗) = 1. Note that these are a clear consequence of the elementary properties of (condi-
tionally) independent exponential random variables.

Furthermore, Y1ρ⃗ (where Y1 is defined in (X1)(a)) is an F -stopping time since

{Y1ρ⃗ ≤ t⃗} =

{
∃(l, i) : ξil

ρiQi,i

ρi ≤ ti

}
=

{
∃(l, i) : ξil

Qi,i

≤ ti

}
= {∃i : Xi,i has a jump in [0, ti]} ,

and the event on the RHS is clearly F (⃗t)-measurable. Applying Lemma 4.4, we arrive to the
conclusion that Zρ⃗ is a stopping-time with respect to the natural filtration of X(·+ S⃗)−X(S⃗),
and a little thought is needed to see that this is enough to conclude that S⃗ + Zρ⃗ is a stopping
time with respect to (F (⃗t), t⃗ ≥ 0⃗).

By induction, Lemmas 4.6 and 4.7 imply the following:

Lemma 4.8. Recall Exploration 4.1. The vectors S⃗L
k and S⃗R

k constructed in (X1)(a) are F -
stopping times, for any relevant k.

Remark 4.9. Lemma 4.7 guarantees that the start of exploration (in (X1)(a)) of each connected
component occurs at a stopping times. Lemma 4.6 implies that S⃗L

k and S⃗R
k are stopping times

for each k such that ϖ(k) is not a root of a connected component (or equivalently, ϖ(k) is
discovered in (X2)(c) at some earlier step).

The following result will be used to prove the required “equivalence” of (X2) in Exploration
4.1 and (G2) in Exploration 4.2.

Lemma 4.10. Suppose that S⃗ is an F -stopping time. Let U be the F (S⃗)-measurable collection
defined as {(l, i) : i ∈ [m], l ∈ len(wi), ξil/Qi,i > Si}. Let (L, I) be an F (S⃗)-measurable
random index.

Then

P
(
ξjr
Qj,j

∈ [Sj, Sj + wI
LRj,I)

∣∣∣F (S⃗)

)
1[(r,j)∈U ,(L,I )̸∈U ] =

(
1− e−Qj,Iw

I
Lw

j
r

)
1[(r,j)∈U ,(L,I )̸∈U ].
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Proof. Due to Lemma 4.4, we can suppose without loss of generality that S⃗ = 0⃗, where we
replace W with W̃.

Since ξjr ∼ Exp(wj
r), we have

P
(
ξjr/Qj,j ∈ [0, wI

LRj,I)
)
= 1− exp

(
−Qj,jRj,Iw

I
Lw

j
r

)
.

The claim now follows from the identities Rj,IQj,j ≡ Qj,I (see (2.2)).

4.3 Proof of Proposition 4.3
The argument relies on the inductive coupling of the two explorations. We will need the follow-
ing notation. Let Ek (resp. Ẽk) denote the σ-algebra generated by the initial k∧K (resp. k∧ K̃)
steps of Exploration 4.1 (resp. 4.2). We begin by noting that by induction

Ek = F
(
S⃗R
k∧K

)
. (4.6)

Indeed, note that the algorithm gathers all the information in Ek while passing through steps
(X1)–(X3) in the initial k ∧K rounds (in fact, this information is gathered already by the end
of (X2)(c) in round k ∧ K). In particular, all the jump times of X occurring before S⃗R

k∧K are
included in Ek, hence Ek ⊃ F (S⃗R

k∧K). In the opposite direction, note that using F (S⃗R
k∧K) we

can reconstruct the field exploration for the first k∧K steps (or rounds), so that Ek ⊂ F (S⃗R
k∧K).

Unless needed for additional clarity, we will abuse notation and write “step k” instead
of “step k ∧ K” (or “step k ∧ K̃”). We will also write S⃗∗

k instead of S⃗∗
k∧K , where as usual

∗ ∈ {L,R}.

4.3.1 The base of induction

If k = 1, we need to compare steps (X1)(a) and (G1)(a). In this case, Lemma 4.7 (with S⃗ = 0⃗)
implies that the respective outputs of steps (X1)(a) and (G1)(a) are equal in distribution. We
couple them so that they are equal almost surely.

Recall that ϖ(1) = (l1, i1) and similarly ϖ̃(1) = (l̃1, ĩ1). As just explained, in our coupling
(l̃1, ĩ1) = (l1, i1). Continuing onto (X2) and (G2), for each vertex v ∈ U∗

0 = Ũ∗
0 = U0 \ {ϖ(1)}

P(v ∈ B1

∣∣E0,U∗
0 ) = 1− exp

(
−Qi1,t(v)wvw

i1
l1

)
,

due to Lemma 4.10, and similarly,

P
(
v ∈ B̃1

∣∣Ẽ0, Ũ∗
0

)
= 1− exp

(
−Qi1,t(v)wvw

i1
l1

)
,

due to the very definition of G (in particular, the independence of edge connections in DCSBM).
Therefore, B1|(E0,U∗

0 )
d
= B̃1|(Ẽ0, Ũ∗

0 ), and more importantly ξil/Qi,i ∈ [SL
1;i, S

R
1,i) can be used

(verbatim) to generate the output of (G2)(c). More precisely, we repeatedly apply Lemma 4.4
and Lemma 4.8 to see that the residual clocks in Step (c) of (X2) are still (conditionally) inde-
pendent exponential random variables. There is no analogue of (X2)(d) in Exploration 4.2. In
particular, the sequences (S⃗∗

k)k do not appear in the statement of Proposition 4.3, yet they play
an important role in its proof. As before, we couple the outputs of (X2)(c) and (G2)(c) so that
they are equal almost surely.

Since (X3) (resp. (G3)) depends deterministically on the output of (X2) (resp. (G2)), we
conclude that (X3) and (G3) are clearly almost surely equal (at least, if k = 1) in our coupling.
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4.3.2 Induction Step

Suppose that on {K ≥ k−1} = {K̃ ≥ k−1} we already have a coupling in which the outputs
of the two explorations are identical almost surely in steps 1, 2, · · · , k − 1. We need to extend
it so that {K = k − 1} = {K̃ = k − 1}, and furthermore that on {K ≥ k} = {K̃ ≥ k} the
outputs of the two explorations in step k are again identical almost surely.

The induction step is essentially identical to the base case k = 1, with additional applica-
tions of Lemma 4.8 whenever necessary. Here we only sketch the argument.

Recall that the two explorations have the same condition for entering the “while loop” in
steps (X0) and (G0), respectively.

On {K ≥ k − 1} ∩ {Ak−1 ̸= ∅} = {K̃ ≥ k − 1} ∩ {Ãk−1 ̸= ∅} the outputs of (X1)
and (G1) are a deterministic function of the outputs of step k − 1 in the already constructed
coupling, and therefore they are identical almost surely. On {K ≥ k − 1} ∩ {Ak−1 = ∅} =

{K̃ ≥ k − 1} ∩ Ãk−1 = ∅} we rely on Uk−1 = Ũk−1 and therefore U ρ⃗
k−1 = Ũ ρ⃗

k−1 almost surely.
Hence {K = k − 1} =

{K ≥ k − 1,Ak−1 = ∅,U ρ⃗
k−1 = ∅} = {K̃ ≥ k − 1, Ãk−1 = ∅, Ũ ρ⃗

k−1 = ∅} = {K̃ = k − 1},

up to null-sets, and furthermore on {K > k − 1} a.s.
= {K̃ > k − 1} we apply (as in the base of

induction) Lemmas 4.4, 4.7 and 4.8 in order to couple the outputs of (X1)(a) and (G1)(a).
The coupling in steps (X2) and (G2), and in steps (X3) and (G3), respectively, is done as in

the base case. This concludes the proof of Proposition 4.3.

4.4 Exploration 4.1 and hitting times T
Recall the definition ofXi,j in (2.3). Due to elementary properties of independent exponentials,
for each fixed j, there is an almost surely uniquely defined permutation πj on len(wj) letters
such that

ξj
πj(1)

< ξj
πj(2)

< · · · < ξj
πj(len(wj))

. (4.7)

We will sometimes write π(l, j) in place of the value πj(l) of the permutation πj at l. We shall
also sometimes write π(l, j) instead of vertex (πj(l), j).

As in the proof of Lemma 4.7, observe that with probability 1

X(⃗t−) = −t⃗ if and only if t⃗ ≤
(

1

Q1,1

ξπ(1,1), · · · ,
1

Qm,m

ξπ(1,m)

)
(4.8)

since the first jump time on the jth time-line is 1
Qj,j

ξv, where v = π(1, j), and since for all t⃗with

jth component tj ≥ 1
Qj,j

ξπ(1,j) we have by definition Xj (⃗t) ≥ Xj,j(tj) ≥ −tj + wπ(1,j) > −tj .
Recall the definition of Y1 in (X1)(a) and recall that Y1ρ⃗ is an F -stopping time (see

Lemma 4.7). Due to (4.8) we have that

{T (y) = yρ⃗} = {Y1 ≥ y} a.s.. (4.9)

The above remarks together with standard properties of exponentials imply the following.

Lemma 4.11. T(y) = yρ⃗ for y ≤ Y1 and T(Y1+) ̸= T(Y1).

Now letϖ(1), ϖ(2), · · · , ϖ(N) be the vertices of the first connected component discovered
in Exploration 4.1.

More precisely, define N := inf{k : ζk = 2} − 1. In the statement of the next result we use
the above notation.
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Lemma 4.12. We have

T(Y1) = S⃗L
1 and T(Y1+) = S⃗R

N almost surely. (4.10)

On {K > N} the restriction of T to (Y1, Y1 + Y2] is an affine function

y 7→ T(y) = T(Y1+) + (y − Y1)ρ⃗.

More generally, for any l ≤ r and p positive integers, on the event {ζl−1 = p− 1, ζl = p, ζr =
p} ∩ ({K = r} ∪ {K > r, ζr+1 = p + 1}) (where {ϖ(l), · · · , ϖ(r)} is the pth connected
component explored), we have

T

(
p∑

n=1

Yn

)
= S⃗L

l and T

(
p∑

n=1

Yn+

)
= S⃗R

r almost surely, and (4.11)

on the above event intersected with {K > r} the restriction of T to (
∑p

n=1 Yn,
∑p+1

n=1 Yn] is an
affine function

y 7→ T(y) = T

(
p∑

n=1

Yn+

)
+

(
y −

p∑
n=1

Yn

)
ρ⃗.

Proof. We prove in detail the statements which concern the first encountered component, or
more precisely the process T before and after its first jump. The statements related to the pth
jump of T can be proven in a similar fashion, using the strong Markov property of X. We
provide a sketch, and leave the details to an interested reader.

The first identity in (4.10) is an easy consequence of the definition of S⃗L
1 in (X1)(a).

In order to establish the second identity in (4.10) it suffices to show that almost surely

T(Y1+) ≤ SR
N + δρ⃗, for any δ > 0, and (4.12)

T(Y1 + ε) > SR
N , for any ε > 0. (4.13)

As a preliminary calculation we show (see Corollary 4.5) that almost surely

Xj(S
R
N ;i−) = Xj(S

R
N ;i) =

m∑
j=1

Xj,i(S
R
N ;i) = −ρjY1, for each j ∈ [m]. (4.14)

Let e⃗k be the kth standard basis vector of Rm, and note that by linearity

S⃗R
N − S⃗L

1 =
N∑
p=1

R⃗t(ϖ(p))wϖ(p) = R

(
N∑
p=1

wϖ(p)e⃗t(ϖ(p))

)
= RM⃗ , (4.15)

where M⃗ is the total weight vector (broken by type, see (2.8)) of the first explored component.
In addition, for i ̸= j we have by construction of the stopping time S⃗R

N (see again (X2)(d)
and (2.3)) that

Xj,i(S
R
N ;i) =

∑
p:t(ϖ(p))=i

p≤N

Rj,iwϖ(p)

as each jump of Xj,i that occurs before time SR
N ;i corresponds either to ϖ(1) or to a (type i)

child of some vertex from ϖ(1), · · · , ϖ(N). Similarly,

Xj,j(S
R
N ;j) = −SR

N ;j +
∑

p:t(ϖ(p))=j
p≤N

wϖ(p).
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Adding up the identities in the last two displays and recalling that Rj,j = 1 (see (2.2)) implies

m∑
i=1

Xj,i(S
R
N ;i) = −SR

N ;j +
m∑
i=1

∑
p:t(ϖ(p))=i

p≤N

Rj,iwϖ(p) = −SR
N ;j +

N∑
p=1

Rj,t(ϖ(p))wϖ(p)

= −SR
N ;j + e⃗Tj RM⃗ = −SL

1;j = −ρjY1,

where we used (4.15) for the second to last identity.
We now know that X(S⃗R

N) = −Y1ρ⃗, and furthermore recall that the stack of active vertices
(of the first explored component) is exhausted at time S⃗R

N . The field X evolves deterministically
for tl ∈ (SR

N ;l, S
R
N ;l+Y2ρl) where Y2 is again defined in (X1)(a), and where S⃗L

N+1 := S⃗R
N+Y2ρ⃗ on

{Y2 <∞}. More precisely, during (S⃗R
N ;l, S⃗

R
N ;l+Y2ρl), the lth coordinate of X deterministically

decreases at rate 1. If ρl = 0 the lth coordinate of X is not relevant in (X1)(a). In particular,
{δ < Y2} = {X(S⃗R

N + δρ⃗) = −(δ + Y1)ρ} and therefore we have

{δ < Y2} ⊂ {T(Y1 + δ) ≤ S⃗R
N + δρ⃗}, (4.16)

which is enough for concluding (4.12). Note that S⃗L
N+1 is defined only on {Y2 < ∞}, but the

rest of the argument is also valid on {Y2 = ∞}, the event that the exploration process ends
upon exploring the first (and only) connected component which intersects [m]ρ⃗.

We next show (4.13). Again due to Corollary 4.5 (or by the reasoning in the previous para-
graph) we know that T(Y1 + ε) is a point of continuity for X. We will show by induction that
T(Y1 + ε) ≥ S⃗R

k for all k = 1, 2, · · · , N .
To do this, we observe that for each p = 2, · · · , N the vertex ϖ(p) = (lp, ip) is discovered

strictly before the start of its corresponding observation window in (X2)(a). In terms of the
exponential clock ξiplp , this property can be written as

ξ
ip
lp

Qip,ip

< SR
p−1;ip = SL

p;ip , p ≥ 2,

where the last identity above follows form (X2)(d). The root vertex ϖ(1) is discovered at
SL
1,i1

, the start of its observation window.
Therefore, on {k ≤ N ≤ K}, before time S⃗L

k there are at least ϖ(1), . . . , ϖ(k) already
discovered in Exploration 4.1. So for each k = 1, 2, · · · , N and i ̸= j we have

Xj,i(ti) ≥
∑

p≤k:ip=i

Rj,iwϖ(p), ∀ti ≥ SL
k;i, and moreover (4.17)

Xj,j(tj) ≥ −SR
k;j +

∑
p≤k:ip=j

wϖ(p), ∀tj ∈ [SL
k;j, S

R
k;j], and (4.18)

Xj,j(tj) ≥ −sj, ∀tj ≤ sj. (4.19)

Similarly, if k = 1 our exploration algorithm guarantees that for j ̸= i1

Xj,i1(ti1) ≥ Rj,i1wϖ(1), ∀ti1 ≥ SL
1;i1
. (4.20)

Recall the definition of R⃗j in (4.1). Recall again (see (X1)(a) and (X2)(d)) the recursion

SL
1;i = ρiY1, S

R
k;i = SL

k;i +Ri,ikwϖ(k), k ∈ [N ], and SL
p;i = SR

p−1;i, p ∈ [N ] \ {1}, (4.21)
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for each i ∈ [m], where as usual ik = t(ϖ(k)). In particular, using (4.19), (4.20), and the
middle identity in (4.21) we see that if j ̸= i1 then for any t⃗ such that ti1 ≥ SL

1;i1
and tj ≤ SR

1;j

we have Xj (⃗t) =
m∑
i=1

Xj,i(ti) ≥ Rj,i1wϖ(1)︸ ︷︷ ︸
Xj,i1

(ti1 )

− SR
1;j︸︷︷︸

Xj,j(tj)

= −ρjY1. (4.22)

Similarly, if j = i1 we apply (4.18), monontonicity of off-diagonal processes Xi1,j(·), j ̸= i1,
and again (4.21) to conclude that for any t⃗ such thatti1 ∈ [SL

1;i1
, SR

1;i1
]

we have Xi1 (⃗t) =
m∑
i=1

Xi1,i(ti) ≥ −SR
k;i1

+ wϖ(1) = −ρi1Y1. (4.23)

The estimates in (4.22)–(4.23), combined with the fact that T(Y1) =
a.s S⃗L

1 immediately imply
that T(Y1 + ϵ) > S⃗R

1 , almost surely, which is the base of our induction argument for (4.13).
Now suppose that we have shown {k−1 ≤ N ≤ K} ⊂ ∩ε>0{T(Y1+ϵ) > S⃗R

k−1}. We wish
to show that {k ≤ N ≤ K} ⊂ ∩ε>0{T(Y1 + ϵ) > S⃗R

k }. Recalling S⃗R
k−1 = S⃗L

k , we proceed
(as in the above analysis on [S⃗L

1 , S⃗
R
1 ]) to estimate X from below on [S⃗L

k , S⃗
R
k ]. More precisely,

observe that if t⃗ ≥ S⃗L
k = S⃗R

k−1 is such that tj ≤ SR
k;j for some j ∈ [m] then

m∑
i=1

Xj,i(ti) ≥
∑
i ̸=j

∑
p≤k:ip=i

Rj,ipwϖ(p)︸ ︷︷ ︸
(4.17)

+
∑

p≤k:ip=j

wϖ(p) − SR
k;j︸ ︷︷ ︸

(4.18)

=
∑
p≤k

Rj,ipwϖ(p) − SR
k;j

= −SL
1;j = −ρjY1.

In the second line above we combined the two summations and used Rj,j = 1. For the final
two identities we again applied (4.21) and used telescoping. We obtain {k ≤ N ≤ K} ⊂
∩ε>0{T(Y1 + ϵ) > S⃗R

k }, which concludes the induction step and establishes (4.10).
Now consider

X̃(⃗t) := X(⃗t+ S⃗R
N)− X(S⃗R

N), t⃗ ≥ 0⃗.

Stopping time S⃗R
N is the direct analogue of 0⃗, while S⃗L

N+1− S⃗R
N (if finite, that is well-defined) is

the direct analogue of S⃗L
1 , where X̃(·) now takes the role of X(·). Therefore, the whole argument

above can be repeated for the exploration of the second, and iteratively, of the pth connected
component of DCSBM intersecting [m]ρ⃗. In addition, (4.9) and Lemma 4.11 apply directly on
the shifted process X̃ (and its iterations), and imply in particular that

T̃(y) = yρ⃗, iff y ≤ Ỹ1,

where clearly on the event {N +1 ≤ K} we have Ỹ1 ≡ Y2. In addition, note that for any y > 0

(due to (4.14)) we have T̃(y) := inf{t⃗ ≥ 0⃗ : X̃(⃗t−) ≤ −yρ⃗} ≡ inf{t⃗ ≥ S⃗R
N : X(⃗t−) ≤

−(y + Y1)ρ⃗} − S⃗R
N =: T(y + Y1)− S⃗R

N , almost surely.
With these correspondencies, the above linear expression for T̃ becomes T(Y1 + y) =

S⃗R
N + yρ⃗ = T(Y1+) + yρ⃗, where y ∈ (0, Y2], and this is clearly equivalent to the (affine map)

expression in the statement of the lemma.
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4.5 Proof of Theorem 2.6
In previous sections we did most of the work needed for completing the proof of Theorem 2.6.

The fact that the connected components appear in a size-biased order follows from the
construction of Exploration 4.2 and the equivalence with Exploration 4.1 in Proposition
4.3. Indeed, let {Cj; j ≥ 1} be the connected components of G, and recall that S (Cj) =∑

(l,i)∈Cj ρiQi,iw
i
l . The size-biased ordering with respect to the weights (S (Cj))j is conven-

tionally done as follows: let

El |σ(Cj, j ≥ 1) ∼ Exp(S (Cl)), l ≥ 1, (4.24)

be conditionally independent exponentials; the size-biased ordering (Cτk)k is defined through a
random permutation (τk)k, which is specified via

Eτk < Eτk+1
, k ≥ 1, almost surely.

The random ordering of components obtained in Exploration 4.2 is different from the con-
ventional ordering via (4.24) in at least two ways: (a) we use fragments of connected compo-
nent weights (when searching for the next “root vertex”) instead of full connected component
weights, and (b) we draw (conditionally independent) exponential variables sequentially rather
than simultaneously (this corresponds to our gradual exploration of G).
Nevertheless, the two approaches can be easily linked due to these elementary proper-
ties: (i) the minimum of n independent exponetial random variables is again an expo-
nential variable with rate equal to the sum of n individuals rates, and (ii) (Eτk)k =
(minj Ej,minj ̸=τ1 Ej,minj ̸∈{τ1,τ2}Ej, . . .).

Now suppose that we are given another family (Fv)v∈G of (conditionally and) mutually
independent exponentials given (Cj)j≥1, such that

Fv |σ(Cj, j ≥ 1) ∼ Exp(ρt(v)Qt(v),t(v)wv), v ∈ G.
Due to (i) above, we have

El |σ(Cj, j ≥ 1)
d
= min

v∈Cl
Fv|σ(Cj, j ≥ 1).

Let C(v) denote the connected component of G which contains v. If V1 := argminv∈G Fv let
V2 := argminv∈G\C(V1) Fv, V3 := argminv∈G\(C(V1)∪C(V2)) Fv, and continue inductively. The
reader should note that here we confound again the graph with its vertex set, for ease of notation.

The main point of this discussion is the observation that, due to (i) and (ii) above, we have

(Eτk)k
d
= (min

v
Fv, min

v∈G\C(V1)
Fv, min

v∈G\(C(V1)∪C(V2))
Fv, . . .). (4.25)

We leave it to the interested reader to check that Exploration 4.2 in step (G1)(a) gradually
produces a sequence of exponential random variables equally distributed as the right-hand-side
in (4.25).

Let G = G(W, Q) and recall the notation given before the statement of Theorem 2.6. Given
G, let us generate conditionally independent exponential random variables (Er; r ≥ 1) with
respective rates (S (r); r ≥ 1). Combining the formulae for T in Lemma 4.12 with the size-
biased ordering of connected components yields the following.

Corollary 4.13. We have

(T(y); y ≥ 0)
d
=

(
ρ⃗y +

∑
r

RM⃗ (r) 1{Er<y}; y ≥ 0

)
.
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The strict inequality in the event of the rth indicator function is completely consistent with
Lemma 4.12 and the left continuity of T. While Lemma 4.12 does not concentrate on the
behavior of T after its final (ζK th) jump, it is easy to see that on (

∑ζK
i=1 Yi,+∞) T evolves as

a deterministic affine map, parallel to the line y 7→ yρ⃗.

5 Excursion representation: preliminaries and special case
This section is devoted to the analysis of fields and their hitting times in the deterministic setting
where the fields are well-behaved. In the next section, we will explore the general case, but this
special case is instructive for our later construction and motivation. We start by establishing
some notation which will be useful throughout the sequel.

5.1 Notation
We will define several classes of functions with the following inclusions

D↑↑
0 (R+) ⊂ D↑

0(R+) ⊂ D+
0 (R+) ⊂ D0(R+) ⊂ D(R+).

As usual, we denote by D([0,∞)) = D(R+) the Skorohod space of real càdlàg functions
on R+. Let D0(R+) ⊂ D(R+) contain all f ∈ D(R+) such that f(0) = 0. Note that all
f ∈ D(R+) is necessarily continuous at 0, and moreover if f ∈ D0(R+) then limt↓0 f(t) =
0. Furthermore, D+

0 (R+) denotes the collection of f ∈ D0(R+) with no negative jumps, or
equivalently, such that f(t) ≥ f(t−) for all t. A strictly smaller class D↑

0(R+) contains all the
non-decreasing f ∈ D0(R+). Finally, D↑↑

0 (R+) denotes the collection of f ∈ D↑
0(R+), such

that f(t) > 0 for all t > 0 and f(t) → ∞ as t → ∞. Equivalently, f ∈ D↑↑
0 (R+) if and only

if it is non-decreasing, strictly increasing from the right at 0, and unbounded on R+. Given an
f ∈ D(R+) we will write

J (f) = {t : f(t) ̸= f(t−)}
as the collection of jump times of a function f .

We will focus on “well-behaved” fields x ∈ D(Rm
+ ) where

D(Rm
+ ) :=

x = (x1, · · · , xm)

∣∣∣∣∣∣∣
xi(⃗t) =

m∑
j=1

xi,j(tj),

xi,j ∈ D↑
0(R+), ∀j ̸= i and xi,i ∈ D+

0 (R+)

, ∀i ∈ [m]

 .

Assume that we are given some x = (xi)i∈[m] ∈ D(Rm
+ ) and ρ⃗ ∈ Rm

+ , ρ⃗ ̸= 0⃗. Recalling
(2.6), for each y ≥ 0 we write Tρ⃗(x; y) or T(y) (when x, ρ⃗ are specified by context) for
T(x; yρ⃗), which is the minimal solution of

xi(⃗t−) = −ρiy, ∀i ∈ [m] s.t. ti <∞. (5.1)

Abusing notation, we will shortly write (5.1) in the form

x(⃗t−) = −ρ⃗y. (5.2)

Note that Tρ⃗(x; y) ∈ [0,∞]m is well-defined, according to [16, Lemma 2.3]. Moreover, if
Tρ⃗(x; y) ∈ Rm

+ , then also Tρ⃗(x;u) ∈ Rm
+ for all u ∈ [0, y), since in fact Tρ⃗(x;u) ≤ Tρ⃗(x; y).
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We will frequently omit the symbols ρ⃗ and x from the notation if they are clear from context.
We also write the coordinates

T(y) = (T1(y), T2(y), · · · , Tm(y)) ∈ [0,∞]m.

Since our goal is to prove Theorem 2.8, we also recall the additional assumption (2.15). This
could be called the “column-wise off-diagonal proportionality” (for probabilistic interpretations
see Section 2.5): there is some ρ⃗ ∈ (0,∞)m such that for each l ∈ [m] and all i, j ̸= l

xi,l(t)

ρi
=
xj,l(t)

ρj
, for all t ≥ 0. (5.3)

Under this additional hypothesis, we can and will introduce the following notation

x∗,l(t) :=
xj,l(t)

ρj
, t ≥ 0, (5.4)

where j is any element of [m] \ l. Let

Dρ⃗(Rm
+ ) ⊂ D(Rm

+ )

denote the collection of all fields x ∈ D(Rm
+ ) which also satisfy (5.3).

If f is a real function of a real variable, let us denote by f the “past infimum” of f :

f(t) = inf
r∈[0,t]

f(r), t ≥ 0.

In the sequel we will often work with xi,i instead of xi,i for i ∈ [m]. The main advantage of
xi,i over xi,i is its continuity (here we use the fact that xi,i ∈ D+

0 (R+)) and monotonicity. The
following analogue of xi

xi(⃗t) := xi,i(ti) +
∑
j ̸=i

xi,j(tj), t⃗ ∈ Rm
+ , (5.5)

will be particularly useful to us. We naturally write x for (x1, . . . , xm).
We will be interested in curves γ⃗ : R+ → Rm

+ such that γi is non-decreasing for each
i ∈ [m]. For l⃗, r⃗ ∈ Rm we recall that l⃗ < r⃗ (resp. l⃗ ≤ r⃗) if li < ri (resp. li ≤ ri) for
each i ∈ [m]. We also set r⃗ ± δ = (ri ± δ)i∈[m] for r⃗ ∈ Rm and any δ > 0 a scalar. Let
(⃗l, r⃗) =

∏m
i=1(li, ri) for l⃗ < r⃗.

5.2 Preliminary properties of T(y)

Recall (5.1) and (5.2). In particular, T(y) ≡ Tρ⃗(x; y) = (T1(y), . . . , Tm(y)) is the (component-
wise) minimizer of (5.2). Hence if sol(y) := {r⃗ = (r1, r2, . . . , rm) ≥ 0⃗ : r⃗ solves (5.2)} then

Ti(y) = min
r⃗∈sol(y)

ri, ∀i ∈ [m]. (5.6)

It is easy to see that the original minimization problem (with equality) is solution equivalent
to the one (with inequalities) where the component-wise minimum is chosen from

{r⃗ = (r1, r2, . . . , rm) ≥ 0⃗ : x(r⃗−) ≤ −yρ⃗} (5.7)

instead of sol(y). Furthermore, let us denote by ∥t⃗∥1 =
∑

i ti the usual ℓ1-norm of t⃗. In the
setting where all the components of T(y) are finite, we have the following useful equivalence.
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Lemma 5.1. Provided that T(y) ∈ Rm
+ , the above optimization (minimization) problem for

T(y) is equivalent to {
x(⃗t−) = −ρ⃗y,
∥t⃗∥1 → min .

(5.8)

Proof. Due to sol(y) ⊂ [0,∞)m and (5.6), the component-wise minimum over sol(y) is also
the vector in sol(y) which minimizes the l1-norm.

It is straight-forward from (5.2) that

xi(T(y)−)

ρi
= −y, i ∈ [m],

if T(y) ∈ Rm
+ . Moreover, recalling (5.5), we get the following.

Lemma 5.2. Let T(y), y ≥ 0, be as defined above and suppose T(y) ∈ Rm
+ . Then, for each

y ≥ 0, T(y) is

i) the component-wise minimizer of

x(⃗t−) = −ρ⃗y, (5.9)

and the solution to {
x(⃗t−) = −ρ⃗y,
∥t⃗∥1 → min,

(5.10)

ii) xi,i(t) > xi,i(Ti(y)), for each i ∈ [m] and every t < Ti(y).

Proof. The first statement is a simple consequence of the definitions and the hypotheses. It also
follows from [16, Lemma 2.3.4].

In order to show ii), suppose that for some t∗ < Ti(y) we have xi,i(t
∗) ≤ xi,i(Ti(y)). Then

it is easy to see that the vector t⃗∗ := (T1(y), . . . , Ti−1(y), t
∗, Ti+1(y), . . . , Tm(y)), which is

strictly smaller than T(y) in component i, satisfies

x(⃗t∗−) ≤ x(T(y)−) = −ρ⃗y,

contradicting the minimality of T(y) (in the minimizing problem (5.7)).

Lemma 5.3. The map y 7→ Ti(y) is strictly increasing and left-continuous for each i ∈ [m].

Proof. As commented already, it is clear from the properties of x and x (inherited from those
of xi,j as i, j range through [m]) that y 7→ Ti(y) is non-decreasing for each i.

Suppose that y′ > y, so that −ρ⃗y′ < −ρ⃗y. Assuming there would be at least one i ∈ [m]
such that Ti(y) = Ti(y

′), we could expand (using the non-strict monotonicity of Tj for each
j ∈ [m], together with the monotonicity of xi,j for all i ̸= j)

−ρiy = xi(T(y)−) = xi,i(Ti(y)) +
∑
j ̸=i

xi,j(Tj(y)−)

= xi,i(Ti(y
′)) +

∑
j ̸=i

xi,j(Tj(y)−)

≤ xi,i(Ti(y
′)) +

∑
j ̸=i

xi,j(Tj(y
′)−) = xi(T(y′)−) = −ρiy′,
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which leads to a contradiction.
Note that [16, Lemma 2.3 4.] implies the left-continuity of T. This can be verified directly

by taking a sequence yn ↗ y, defining T∗(y) := limnT(yn) = supnT(yn) and using the
monotonicity of y 7→ T(y) to get T∗(y) ≤ T(y), and the minimality of T(y) to get the
reversed inequality.

Remark 5.4. It is not surprising that T is left-continuous, since it is anm-dimensional analogue
of the left-continuous generalized inverse (the inequality in (5.7) is not strict). Since T is also
(component-wise) strictly increasing, it is easy to see that it is in particular a non-decreasing
left-continuous map with right limits (ndlcrl for short) function.

Lemma 5.2 is quite helpful when solving for T(y). Indeed, since T(y) is the solution of
(5.10) we now also know that

xi(T(y)−)

ρi
= −y, i ∈ [m],

and, therefore, that T(y) solves
x1(⃗t−)

ρ1
=
xi(⃗t−)

ρi
= −y, ∀i ∈ [m],

∥t⃗∥1 → min .

(5.11)

5.3 Solving for T(y) – Special Case
Recall (5.4) and the definition ofDρ⃗(Rm

+ ). In this section and in the next section we assume that
x ∈ Dρ⃗(Rm

+ ) for some given ρ⃗. Our aim is to construct a continuous curve γ⃗ : [0,∞) → Rm

whose values will contain (Tρ⃗(x; y), y ≥ 0). This will enable us to encode the jumps of
Tρ⃗ = T by considering the excursions above past minima of real-valued functions xi(γ⃗(s)),
s ≥ 0, i ∈ [m]. We will arrive to a suitable choice of γ⃗ by trying to solve for T(y).

For each i ∈ [m] let us define

gi(t) := x∗,i(t)−
xi,i(t)

ρi
, t ≥ 0. (5.12)

It is easy to check from the definitions (of Dρ⃗(Rm
+ ) in particular) that gi ∈ D↑

0(R+) for each
i ∈ [m].

After elementary algebraic manipulations (including several cancellations due to (2.15)) the
optimization problem (5.11) can be replaced by

x1(⃗t−) = −ρ1y,
g1(t1−) = gi(ti−), ∀i ∈ [m],

∥t⃗∥1 → min .

(5.13)

Indeed, the constraint x1(⃗t−) = −ρ1y can be replaced by x1(⃗t−) = −ρ1y due to [16,
Lemma 2.3.4], or alternatively due to the fact that the component-wise minimal solution of

x1(⃗t−) = −ρ1y, xi(⃗t−) = −ρiz, ∀i ∈ [m], and some z ≥ 0,

is again necessarily equal to T(y) (the parameter z is free, and we can use monotonicity of
z 7→ T(z)). At this intermediate step we know that T(y) is uniquely determined as the solution
of (5.13).
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In order to circumvent several technical issues, we presently make the following additional
assumption (this hypothesis is dropped in Section 6.2 due to a novel concept and a considerable
amount of additional work):

xi,j(t) are strictly increasing and continuous for all i ̸= j. (SC)

In particular, for each i, t 7→ gi(t) is a strictly increasing continuous function such that gi(0) =
0. We also suppose that gi(t) → ∞ as t → ∞ for all i, which can also by stated by a more
complicated assumption placed on the field x. Consequently, each gi is a homeomorphism, and
we let g−1

i denote its inverse.

Remark 5.5. Anticipating analysis in Section 6.2, it is practical for us to continue writing t⃗−
instead of t⃗ in constraints involving x.

The above strict monotonicity and continuity implies that for any given y

gi(Ti(y)−) = gi(Ti(y)), or equivalently, that x∗,i(Ti(y)−) = x∗,i(Ti(y)), ∀i ∈ [m], (A1)

and also that
g−1
i ◦ gi(Ti(y)) = Ti(y), ∀i ∈ [m]. (A2)

Since T(y) solves g1(t1−) = gi(ti−) according to (5.13), the two properties (A1)–(A2) yield

Ti(y) = g−1
i ◦ g1(T1(y)). (5.14)

In particular, we see that

T(y) = (T1(y), g
−1
2 ◦ g1(T1(y)), . . . , g−1

m ◦ g1(T1(y))),

where T1(y) is the minimizer of
x1(t1−, g−1

2 ◦ g1(t1)−, . . . , g−1
m ◦ g1(t1)−) = −ρ1y,

t1 +
∑
i ̸=1

g−1
i ◦ g1(t1) → min .

This analysis can be improved by introducing a convenient reparametrization of (5.13):
x1(⃗t−) = −ρ1y,
g1(t1−) = gi(ti−), ∀i ∈ [m],
s =

∑m
i=1 ti,

s→ min .

(5.15)

Define

f(u) :=
m∑
i=1

g−1
i (u), u ≥ 0, and κ := f−1, (5.16)

where κ is the usual inverse of the homeomorphism f .
Define

s(y) :=
m∑
i=1

Ti(y) = ∥T(y)∥1, (5.17)

and note that y 7→ s(y) is again left-continuous (in fact it is a ndlcrl map), admitting at most
countably many points of discontinuity. Recalling (5.14), we see that if u = g1(T1(y)−) then
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g−1
i (u) = Ti(y) and so f(u) = s(y), at least in the case when T(y) ∈ Rm

+ . Hence we deduce
that (T(y), s(y)) solves 

x1(⃗t−) = −ρ1y,
ti = g−1

i ◦ g1(t1), ∀i ∈ [m],
s = f(g1(t1)),
s→ min,

(5.18)

Note that f is strictly increasing, since the auxilliary functions (gi)i∈[m] are assumed to be
strictly increasing and continuous. Using (A1) and the reasoning of the previous paragraph we
conclude that f(g1(T1(y)−)) = f(g1(T1(y))) = s(y). Applying the inverse κ = f−1 to the last
equation we see that g1(T1(y)) = κ(s(y)). It is now immediate from (A2) or from (5.18) that

T1(y) = g−1
1 ◦ κ(s(y)) = g−1

1 ◦ κ(∥T (y)∥1),

where s(y) is the minimal solution of (5.18). Note that there is nothing special with i = 1,
which we initially took in (5.13) as the reference index. The same reasoning as above leads to
the following conclusion: under assumptions (A1)–(A2) we get

T(y) = (γ⃗sc(s(y))), (5.19)

where
γ⃗sc(s) := (g−1

1 ◦ κ(s), . . . , g−1
m ◦ κ(s)),

and where s(y) is the minimal solution to

xj(γ⃗sc(s)−) = −ρjy, (5.20)

for any (and every) j ∈ [m]. Here the subscript “sc” just stands for special case.

6 Excursion representation: smooth composition and the
general case

Assumptions (A1)–(A2) are cumbersome to check and false in general. Indeed, (SC) is almost
surely false for the fields constructed in (2.4). We will soon construct a generalization of the
“composed with” operator which proves quite useful in the sequel, and might be of general
interest. As far as we are aware, this novel concept, which could be studied on the level of
undergraduate calculus, has not yet appear in the literature.

6.1 Smooth compositions
Recall briefly the technical issues of our construction of γ⃗sc in the previous section. More
precisely, these are the steps in the previous construction of the solution T(y) which would fail
(in the sense of mathematical rigor) without (SC) or (A1)–(A2).

In this section, we no longer assume (SC). The auxiliary functions (gi)i∈[m] are no longer
homeomorphisms, however they are still non-decreasing and right-continuous functions. In the
next section we will assume that gi ∈ D↑↑

0 (R+) for each i ∈ [m]. We henceforth write ndrcll for
non-decreasing right-continuous functions with left-limits. From now on g−1

i will denote the
generalized inverse of gi. Recall that if h is ndrcll, its (right-continuous generalized) inverse
h−1 is defined as follows

h−1(s) := inf{u > 0 : h(u) > s}. (6.1)
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The construction of γ⃗sc relied on properties (A1) and (A2). The former requires some
smoothness, and the latter is trickier to mimic since h−1 ◦ h need not equal the identity. Our
composition-like operator ◦̃ constructed below is such that

g ◦̃ g−1 = g−1 ◦̃ g = id (6.2)

for each g ∈ D↑↑
0 (R+).

Let us recall a few basic useful inequalities, which relate a ndrcll map and its inverse:

h(u) > s =⇒ h−1(s) ≤ u, (6.3)

h(u) ≤ s =⇒ h−1(s) ≥ u, (6.4)

and by contraposition of (6.3)

h−1(s) > u =⇒ h(u) ≤ s. (6.5)

It is also easy to see that
(h−1)−1 = h.

One can see [37, Chapter 0] for more information.
Before turning to the construction of ◦̃ , let us recall some standard properties of the inverse,

most of which will be used without further mention in the sequel. These are all elementary
consequences of definitions and inequalities (6.3)–(6.5), and their proofs are left to the reader.
We recall that J (f) is the collection of jump times for a function f .

Lemma 6.1. Let h ∈ D↑↑
0 (R+) and h−1 be as in (6.1).

i) If h is strictly increasing from the right at some u ≥ 0, then h−1(h(u)) = u.

ii) If h(h−1(s)) = s for some s ≥ 0, then h−1 is strictly increasing from the right at s.

iii) h−1(h(u−)) ≥ u and h−1(h(u)−) ≤ u for all u ≥ 0. In particular, if h(u−) < h(u) (i.e.
u ∈ J (h)) for some u ≥ 0, then h−1(h(u−)) = h−1(h(u)−) = u.

vi) If h(h−1(s)−) = h(h−1(s)) for some s ≥ 0, then h(h−1(s)) = s.

Remark 6.2. Clearly for g ∈ D↑↑
0 (R+), g(u) > g(u−) (i.e. u ∈ J (g)) if and only if the

inverse image (g−1)−1({u}) of g−1 at u is the (positive length) interval [g(u−), g(u)], provided
g is strictly increasing from the right at u, or [g(u−), g(u)) otherwise. Note that g ◦ g−1 = id
except on the union of (g−1)−1({u}) (in some cases, taken without the right boundary point),
over all u ∈ J (g). The set of jump points for g is at most countable. However the above set
of exceptions can be quite large. Indeed, for “pure jump” functions g ∈ D↑↑

0 (R+) we have
that

⋃
u∈J (g)(g

−1)−1({u}) = (0,∞). It will be convenient to use below an example of such a
function

ge(u) :=
∞∑
k=1

1

k
1[1/(k+1),1/k) +

∞∑
j=1

j 1[j,j+1). (6.6)

Let D↑
0,J(R+) consist of all g ∈ D↑↑

0 (R+) such that g is both strictly increasing from the
left and from the right at any jump point u of g. If g ∈ D↑

0,J(R+) has a jump at u > 0 then
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(g−1)−1({u}) = [g(u−), g(u)] and moreover g ◦ g−1(s) = s for s = g(u). Therefore it is
natural to define g ◦̃ g−1 ≡ g ◦ g−1 = id on the good set

G(g) :=

(⋃
u

[g(u−), g(u))

)c

,

and to define g ◦̃ g−1 as a linear spline on G(g)c.
In particular g ◦̃ g−1 is defined on [g(u−), g(u)) by linearly interpolating through

(g(u−), lim{v↗g(u−):v∈G(g)} g ◦̃ g−1(v)) = (g(u−), g(u−)) and (g(u), g ◦̃ g−1(g(u))) =
(g(u), g(u)). As a result we get g ◦̃ g−1 = id.

Remark 6.3. (a) The good set G(g) is dense in any left neighborhood of g(u−), using the
fact that g jumps at u and the assumption g ∈ D↑

0,J(R+). Therefore, it is possible to take
the left limit above through points in G(g).

(b) We could have just set g ◦̃ g−1 := id instead of going through the above “construction by
linear approximation”, but the point here is that (under mild and natural “compatibility”
assumptions, see Definition 6.4 below) the final step in the above construction can be
repeated in the context where g is an element of D↑↑

0 (R+), and where g−1 is replaced by
another function κ ∈ D↑↑

0 (R+).

Function ge defined in (6.6) is an element of D↑↑
0 (R+) \D↑

0,J(R+) and, moreover, it is not
strictly increasing from the right at any of its (countably many) jumps. Furthermore, the good
set G(ge) consists of a single point 0. Consider any three of its consecutive jumps, these could
be for example ui = i, with i = 1, 2, 3 (the conclusion is the same in general). If si := ge(ui),
then ge ◦ g−1

e (si) = ge(ui+1) = si+1, for i = 1, 2. One could be tempted to define of ge ◦̃ g−1
e

by linearly interpolating through the points (si, ge ◦ g−1
e (si)) and (si+1, ge ◦ g−1

e (si+1)) on each
[si, si+1]. The result is again a continuous function, but clearly different from the identity map.

However, one could extend ◦̃ in a different and better way.

Definition 6.4. We say that two elements g and κ of D↑↑
0 (R+) are compatible if

κ−1({u}) = {r ≥ 0 : κ(r) = u} has positive length whenever u ∈ J (g), (H1)

and g(κ(s−)) = g(κ(s)−) whenever κ(s−) < κ(s). (H2)

Assumption (H1) means precisely that the inverse κ−1 of κ also jumps at each jump point
u of g. In this case, the segment κ−1({u}) equals [κ−1(u−), κ−1(u)] (resp. [κ−1(u−), κ−1(u)))
provided κ−1 is strictly increasing from the right at u (resp. constant on [u, u + δ) for some
δ > 0).

We proceed by analogy to the construction of g ◦̃ g−1 for g ∈ D↑
0,J(R+).

Definition 6.5. Suppose that the pair of functions (g, κ) satisfies (H1) and (H2). Define a new
function g ◦̃κ by

(i) if s ̸∈ ⋃u∈J (g)[κ
−1(u−), κ−1(u)] let g ◦̃κ(s) = g ◦ κ(s),

(ii) for each jump point u ∈ J (g), on [κ−1(u−), κ−1(u)] define g ◦̃κ to be the line segment
through the points (κ−1(u−), g(u−)) and (κ−1(u), g(u)).

From now on we refer to ◦̃ as “smoothly composed with”. As discussed immediately after
Remark 6.3, there are situations where “smoothly composed with” and “composed with” differ
on (0,∞), so ◦̃ is not a direct extension/generalization of ◦. If κ = g−1 then it is easy to see
that both (H1) and (H2) are satisfied and moreover that g ◦̃κ = g ◦̃ g−1 = id.
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Figure 1: The red curve is the graph of g, while the green curve is the graph of κ. The rectangle
with dotted orange borders is an interesting region, since it includes a jump u of g, as well as
the image of κ on an interval which includes [r1, r3] = [κ−1(u−), κ−1(u)]. Its enlarged copy
on the right depicts the graph of γ = g ◦̃κ in blue. In particular, γ is a continuous (linear
interpolation) function on [r1, r3]. Also note that (since g and κ are compatible) g must be
constant on [κ(s−), κ(s)], where s is the jump of κ in [r4, r5].

6.1.1 Graphs of g ◦ κ and g◦̃κ
Suppose that (g, κ) is a pair of compatible functions in D↑↑

0 (R+). Let us assume that the graphs
of g and κ are drawn in the same Cartesian system. (see Figure 1 for an illustration). Recall that
in order to construct g ◦ κ(t) using one starts with the point (t, 0) on the abscissa, searches for
(t, κ(t)) on the graph of κ, from there moves horizontally to (κ(t), κ(t)) on the diagonal y = x;
and finally searches along the vertical line x = κ(t) for the point (κ(t), g(κ(t)) on the graph of
g. This was done in the constructions of g ◦̃κ(rk) = g ◦ κ(rk) for k ∈ {4, 5, 6} in Figure 1 (at
these points κ is strictly increasing and continuous).
One can analogously construct g ◦̃κ(rj) for j ∈ {1, 2, 3}, knowing that [κ−1(u−), κ−1(u)] =
[r1, r3] for some jump point u = κ(rj) of g. In this general setting the final vertical move from
(u, u)(= (κ(rj), κ(rj)) depends on j, or more precisely on the position of rj within [r1, r3].
Since r1 = min{s : κ(s) = u}, the procedure ends at (κ(r1), g(u−)), the “lowest point” with
abscissa u in the closure of the graph of g. Since r3 = max{s : κ(s) = u}, the procedure ends
at (κ(r3), g(u)), the “highest point” with abscissa u in the closure of the graph of g. In general,
any r2 ∈ [r1, r3] has representation r2(λ) = r1 + λ(r3 − r1) for some λ ∈ [0, 1]. Given such λ,
the procedure ends at (κ(r2), g(u−) + λ(g(u)− g(u−)).

Remark 6.6. Our proofs below do not rely on an explicit formula for g ◦̃κ; however, we include
it here for readers’ benefit. Note that the family of sets {κ−1({u}), u ≥ 0} is a partition of R+.
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Then for every s, u ∈ R+, such that s ∈ κ−1({u})

(g ◦̃κ(s)) = g(u−) +
g(u)− g(u−)

κ−1(u)− κ−1(u−)
(s− κ−1(u−))

= g(u)− g(u)− g(u−)

κ−1(u)− κ−1(u−)
(κ−1(u)− s).

In the expression above, we assume that A := g(u)−g(u−)
κ−1(u)−κ−1(u−)

equals zero if g has no jump at u.
Due to (H1) κ−1(u)− κ−1(u−) > 0 if u ∈ J (g), so A is always well defined.

Note in addition that it could be κ−1(v)−κ−1(v−) > 0 even if g(v) = g(v−), and then the
restriction of g◦̃κ on [κ−1(v−), κ−1(v)) is again a linear (constant) function y(s) ≡ g ◦ κ(v).

Even though the above remark is not necessary for the following lemma, using it makes the
following straightforward:

Lemma 6.7. Suppose that (g, κ) is a compatible pair. Then g(κ(t)−) ≤ g◦̃κ(t) ≤ g(κ(t)) for
all t ≥ 0.

Remark 6.8. (a) Note that each line segment in (ii) of Definition 6.5 is increasing (its slope,
denoted by A in Remark 6.6, is strictly positive).

(b) If v < u is another jump of g (and therefore of κ−1) then g(v−) < g(v) ≤ g(u−) < g(u).
We conclude that g ◦̃κ restricted to

⋃
u:J (g)[κ

−1(u−), κ−1(u)] is a (strictly) increasing
function.

(c) From (H1) and the right-continuity of κ at κ−1(u−) we conclude that at each jump point
u of g it must be κ(κ−1(u−)) = u, and so g ◦ κ(κ−1(u−)) = g(u).

(d) The definition above does not rely on any additional properties of κ. In particular, it
could be that κ(κ−1(u)) > u, and also that g(κ(κ−1(u))) > g(u). Similarly, it may not
be possible to access κ−1(u−) from the left through the good set of points in Definition
6.5 (i).

Remark 6.9. Condition (H1) is necessary for the interpolating line in Definition 6.5 (ii) to
be well-defined. Also note that it could happen that for two successive jumps of g, occurring
respectively at u1 and u2 > u1, we have κ−1(u1) = κ−1(u2−). This means that κ−1 is a
constant function on [u1, u2), and also that κ jumps at point κ−1(u1) = κ−1(u2−) from value
u1 = κ(κ−1(u1)−) = κ(κ−1(u2−)−) to value u2 = κ(κ−1(u1)) = κ(κ−1(u2−)). Assumption
(H2) with s = κ−1(u1) is necessary for compatibility of the two different definitions of g ◦̃κ at
the point κ−1(u1) = κ−1(u2−).

Lemma 6.10. Let g, κ be elements of D↑↑
0 (R+) such that (g, κ) satisfies (H1) and (H2). Then,

provided that u ∈ J (g) is a jump point of g,
(a) g ◦̃κ(κ−1(u−)) = g(u−) ≥ g ◦̃κ(s), for all s < κ−1(u−),
(b) g ◦̃κ(κ−1(u)) = g(u) ≤ g ◦̃κ(s), for all s > κ−1(u).

In the argument below we will use several times and without explicit mention the fact that
g (and κ) is ndrcll.

Proof. (a) If s < κ−1(u−) then necessarily κ(s) < u so that g ◦ κ(s) ≤ g(u−), and this
implies the claim provided s is a “good point” from Definition 6.5 (i). Otherwise, it must be
s ∈ [κ−1(v−), κ−1(v)] for some v < u and then g ◦̃κ(s) ≤ g(v) ≤ g(u−).
(b) If s > κ−1(u), then necessarily κ(s) > u so that g ◦ κ(s) ≥ g(u), and this again implies
the claim provided s is a “good point”. Otherwise, it must be s ∈ [κ−1(v−), κ−1(v)] for some
v > u and then g ◦̃κ(s) ≥ g(v−) ≥ g(u).
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The above partial monotonicity result can be easily improved as follows.

Lemma 6.11. Let g, κ be as in Lemma 6.10. Then γ = g ◦̃κ is ndrcll.

Proof. Since g and κ are elements ofD↑↑
0 (R+), the same is true for g◦κ. To verify that γ = g ◦̃κ

is monotone non-decreasing, we use Lemmas 6.7, 6.10 when comparing the values of γ(s1)
and γ(s2) if at least one, s1 or s2, is not a “good point” from Definition 6.5 (i), and we use
the monotonoicity of g ◦ κ when both s1 and s2 are “good points”. One can also try to derive
this using Remark 6.6 and a comparison argument. Monotonicity implies that γ has both limits
from the right and from the left at every point.

We will next show the right continuity of γ. By the construction of γ, it is trivial that γ is
right-continuous on every interval [κ−1(u−), κ−1(u)), u ≥ 0 (see also Remark 6.6). It remains
to show that γ is right continuous on A :=

(⋃
u≥0[κ

−1(u−), κ−1(u))
)c.

Let us fix s ∈ A. Then there exists u ≥ 0 such that s = supκ−1({u}), if and only if s is
the right limit of a positive length interval [κ−1(u−), κ−1(u)), or there exists u′ ≥ 0 such that
{s} = κ−1({u′}). If both happen, then κ jumps at s from u = κ(s−) to u′ = κ(s), and s is the
right end point of [κ−1(u−), κ−1(u)).

There are two cases to consider. In the first case we have κ−1({u}) = [κ−1(u−), κ−1(u)],
which includes the situation where κ−1({u}) = {s} is a one-point set. The right continuity of
κ at s = κ−1(u) implies existence of a sequence

{un, n ≥ 1} ⊂ Imκ such that un ↓ u. (6.7)

In particular, for each n we may choose sn ∈ κ−1({un}). Note that (sn)n≥1 ⊂ (s,∞) is strictly
decreasing. Recalling the definition of γ and its monotonicity, together with Lemma 6.7 and
the right continuity of g, we have

g(u) = γ(s) ≤ lim
n→∞

γ(sn) = lim
n→∞

g◦̃κ(sn) ≤ lim
n→∞

g(un) = g(u).

Due to the already established monotonicity of γ, the equality γ(s) = limn→∞ γ(sn) is suffi-
cient for concluding that γ is right continuous at s.

In the second case we have κ−1({u}) = [κ−1(u−), κ−1(u)). In particular, s = κ−1(u) but
κ(s) = u′ > u = κ(s−), so (6.7) is false. Recalling the definition of γ and the assumption (H2),
we have

γ(s) = g(u) = g(κ(s−)) = g(κ(s)−) = g(u′−).

Thus, if [κ−1(u′−), κ−1(u′)) has positive length, we obtain the (right-)continuity of γ at s from
the reasoning of Remark 6.9. Otherwise, κ−1({u′}) is a single point. This implies (due to (H1))
that g(u′−) = g(u′) and moreover that γ(s) = g ◦ κ(s) = g(u′) = g(u′−). In this case we
can again use (6.7) with u replaced by u′, and the subsequent reasoning to obtain the right
continuity of γ at s.

Lemma 6.12. Let g, κ be as in Lemmas 6.10 and 6.11. Then γ = g ◦̃κ ∈ D↑↑
0 (R+) is a

continuous function.

Proof. Both g(0) = 0 and κ(0) = 0 so g◦κ(0) = g ◦̃κ(0) = γ(0) = 0. Lemma 6.7 directly im-
plies that g ◦̃κ is both unbounded and strictly increasing at 0. Lemma 6.11 gives monotonicity.
Therefore γ ∈ D↑↑

0 (R+).
We next fix s > 0 and show that γ is left-continuous at s. Set u := κ(s) and note that if s be-

longs to the interior of κ−1({u}), which equals (κ−1(u−), κ−1(u)) if non-empty, then the left-
continuity of γ at s follows directly from the construction of ◦̃ . Moreover, if (κ−1(u−), κ−1(u))
is non-empty then γ is left-continuous at s = κ−1(u) due to the same observation.
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We now assume that s = κ−1(u−) ≤ κ−1(u) and consider a sequence (sn)n of positive
real numbers, which strictly increases to s. Our goal is to show that limn γ(sn) = γ(s), as this
together with the monontonicity of γ will imply left-continuity at s. We set un := κ(sn), n ≥ 1,
and ū := limn→∞ un. Then note that κ(s−) = ū ≤ u = κ(s) and γ(s) = g(u−) for our choice
of s. Using the definition and monotonicity of γ we have

g(un−) ≤ γ(sn) ≤ γ(s).

Passing to the limit as n→ ∞ we obtain

g(ū−) ≤ γ(s−) ≤ γ(s) = g(u−). (6.8)

If ū = u then clearly γ(s) = γ(s−) = g(u−). Otherwise, if ū < u, then (H2) implies

g(u−) = g(κ(s)−) = g(κ(s−)) = g(ū).

Consequently, if g is continuous at ū, then again γ(s−) = γ(s) due to (6.8). Otherwise,
g(ū−) < g(ū) and therefore κ−1({ū}) has positive length due to (H1). Since here s =
κ−1(u−) = κ−1(ū), we have already covered this case above. This completes the proof of
the lemma.

Remark 6.13. The exact expression (formula) for the linear spline on conveniently chosen in-
tervals [κ−1(u−), κ−1(u)] was not important for the arguments above. The linear interpolation
is the simplest, and it is compatible with taking inverses. However another continuous or dif-
ferentiable increasing interpolation with compatible boundary values would equally imply an
analogue of Lemma 6.12. Nevertheless, the following additivity result, necessary in the proof
of an important property (P3) in Lemma 6.16, requires the spline to be linear.

The following lemma is an easy consequence of our choice of linear spline. We leave the
details to the reader.

Lemma 6.14. Let h1, h2, κ ∈ D↑↑
0 (R+) be such that both (h1, κ) and (h2, κ) satisfy (H1) and

(H2). Then (h1 + h2, κ) also satisfies (H1) and (H2), and moreover

h1 ◦̃κ+ h2 ◦̃κ = (h1 + h2) ◦̃κ.

6.2 Solving for T(y) – the general case
Inspired by the analysis of the previous two sections, we now derive the general expression for
the minimal solution to (5.2) in terms of a solution to a 1-dimensional optimization problem. It
turns out that ◦ can be replaced with ◦̃ in (5.19), but arguing this rigorously is not as simple as
one might guess.

Lemma 6.15. Let gi ∈ D↑↑
0 (R+), i ∈ [m], and f, κ be defined by (5.16) using inverses. Then

for each i ∈ [m] both (H1) and (H2) are satisfied for (g−1
i , κ).

Proof. Fix some i ∈ [m]. Let us check (H1). Suppose that g−1
i (u−) < g−1

i (u) for some u > 0.
Then in particular f(u−) < f(u). Since κ is the (generalized right-continuous) inverse of f , it
is also true that f = κ−1 and in particular that

κ(s) = u, for all s ∈ [f(u−), f(u)) = [κ−1(u−), κ−1(u)). (6.9)
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Let us now check (H2). Suppose that κ(s−) < κ(s) for some s > 0. Then it must be (see
also Lemma 6.1 iii)) that f(u) = s for all u ∈ [κ(s−), κ(s)) = [f−1(s−), f−1(s)). Recalling
that g−1

i , i ∈ [m], are all non-decreasing, their sum being constant on any interval implies that
each of them is constant on the same interval. So g−1

i (u) = g−1
i (f−1(s−)) = g−1

i (κ(s−)) for
all u ∈ [κ(s−), κ(s)), and this is equivalent to (H2) for (g−1

i , κ).

Recall that all the inverses are considered to be generalized right-continuous inverses. Let
gi ∈ D↑↑

0 (R+), i ∈ [m], and let κ be defined by (5.16). Furthermore, define

γi := g−1
i ◦̃κ, (6.10)

and s 7→ γ⃗(s) by
γ⃗(s) := (γ1(s), . . . , γm(s)), s ≥ 0. (6.11)

Note that the next two results are stated and proved in greater generality, although we will apply
them only in the setting where gi are given by (5.12).

Lemma 6.16. (P1) The curve γ⃗ is a continuous curve in Rm,

(P2) for each i, γi is non-decreasing,

(P3) s 7→ ∥γ⃗(s)∥1 is the identity map on R+,

(P4) for each s ≥ 0

κ(s) ∈
m⋂
i=1

[gi(γi(s)−), gi(γi(s))] .

In particular, if s ≥ 0 is such that gi is continuous at γi(s) for each i ∈ [m], then

gi(γi(s)) = gi+1(γi+1(s))(= κ(s)), ∀i ∈ [m− 1].

Proof. Properties (P1) and (P2) are both clearly satisfied due to Lemmas 6.11, 6.12 and 6.15.
Let us show (P3). Recalling that f =

∑m
i=1 g

−1
i , we have

∥γ⃗(s)∥1 =
m∑
i=1

(
g−1
i ◦̃κ

)
(s) = (f ◦̃κ)(s) = s, s ≥ 0,

where the second identity is due to Lemma 6.14, and the third one is due to f = κ−1 (see (6.2)
and Remark 6.13).

Let us next verify (P4). Fix some i ∈ [m] and recall that, due to the construction of ◦̃ , if
κ(s) = u is not a jump point of g−1

i then

γi(s) = g−1
i ◦ κ(s) = g−1

i (u) = g−1
i (u−).

Applying gi to the above identity to get that gi(γi(s)) = gi(g
−1
i ◦ κ(s)) ≥ κ(s), and also that

(see also Lemma 6.1 part iii)) gi(γi(s)−) = gi(g
−1
i (u)−) ≤ u = κ(s).

Alternatively, if κ(s) = u is a jump point of g−1
i , then s ∈ [κ−1(u−), κ−1(u)] =

[f(u−), f(u)], and γi = g−1
i ◦̃κ is specified at s by linearly interpolating between

(f(u−), g−1
i (u−)) and (f(u), g−1

i (u)). Therefore g−1
i (u−) ≤ γi(s) ≤ g−1

i (u), We can now
use the monotonicity of gi, together with the RHS (resp. LHS) inequality to get

gi(γi(s)−) ≤ gi(g
−1
i (u)−) ≤ u = κ(s),(

resp. κ(s) = u ≤ gi(g
−1
i (u−)) ≤ gi(γi(s))

)
,

where we used Lemma 6.1 iii) for both estimates.
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Proposition 6.17. Let g⃗, f, κ, γ⃗ be as in Lemma 6.16, and suppose that we are given some
t⃗ = (t1, . . . , tm) ∈ Rm

+ such that gi(ti) = gi+1(ti+1), i ∈ [m− 1]. Then

t⃗ = γ⃗(∥t⃗∥1),

provided that

(a) for each i ∈ [m], gi is continuous at ti and strictly increasing from the left at ti, or

(b) for each i ∈ [m], gi is strictly increasing from the right at ti.

Proof. Let t⃗ be given as stated. Define s := ∥t⃗∥1 and t⃗′ = (t′1, . . . , t
′
m) := γ⃗(s). Our goal is to

prove that t⃗′ = t⃗ if (a) or (b) (or both).
Note initially that (P3) implies that ∥t⃗′∥1 = s = ∥t⃗∥1. So if t⃗ ̸= t⃗′ then there must exist

some (minimal) index i such that both ti > t′i and ti+1 ≤ t′i+1, otherwise tm > t′m and t1 ≤ t′1.
Assuming (a), we would get from (P4) and monotonicity of gi that

gi(ti) > gi(t
′
i) ≥ κ(s) ≥ gi+1(t

′
i+1−) ≥ gi+1(ti+1−) = gi+1(ti+1) = gi(ti),

a contradiction. For the same reason as above, t⃗ ̸= t⃗′ implies that there must exist some (mini-
mal) index j such that both tj < t′j and tj+1 ≥ t′j+1, otherwise tm < t′m and t1 ≥ t′1. Assuming
(b), we would get from (P4) and monotonicity of gj that

gj(tj) < gj(t
′
j−) ≤ κ(s) ≤ gj+1(t

′
j+1) ≤ gj+1(tj+1) = gj(tj),

which is again impossible.
If the the discrepancy is at m and 1 instead of at i and i + 1 (resp. j and j + 1), we would
analogously arrive to a contradiction in the above argument under assumption (a) (resp. (b)).

Recall that T(y) = Tρ⃗(x; y) is the minimal solution of (5.2). Equivalently, T(y) is the
solution of (5.13) and (T(y), s(y)) (where s(y) is defined in (5.17)) is the solution of (5.15).

The following theorem establishes Theorem 2.8(2).

Theorem 6.18. Let γ⃗ be the continuous curve defined in (6.10), where gi, i ∈ [m], are given
by (5.12). Then

γ⃗(∥T(y)∥1) = T(y), ∀y ≥ 0 s.t. T(y) ∈ Rm
+ .

Proof. Each xi,j is a rcll function, so it can have at most countably many discontinuities (and
they are all jumps). On the set C defined by

C :=
m⋂

i,j=1

{u ≥ 0 : xi,j(u−) = xi,j(u)} =
m⋂
l=1

{u ≥ 0 : x∗,l(u−) = x∗,l(u)}

clearly all xi and (therefore) all gi are (left-)continuous. The complement of C is either a finite
(possibly empty) or a countable subset of R+.

Recall that y 7→ T(y) is (component-wise) strictly increasing (and left-continuous, see
Lemma 5.3). Therefore, T−1

i (Cc) := {y ≥ 0 : Ti(y) ∈ Cc} is either a finite (possibly empty)
or a countably infinite set, for each i. Define

Y :=
m⋂
i=1

T−1
i (C) =

m⋂
i=1

{y ≥ 0 : Ti(y) ∈ C} ⊂ [0,∞). (6.12)
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The above considerations imply that Y c =
⋃m

i=1 T
−1
i (Cc) is a subset of a countable set. In

particular, Y is dense in [0,∞).
We already know that T(y) satisfies (5.13) for any y ≥ 0. Furthermore, if y ∈ Y , then the

identities (A1) are fulfilled at t⃗ = T(y). In other words, gi(ti−) = gi(ti) for each i, and in
particular gi(ti) = gi+1(ti+1), for all i ∈ [m− 1].

In addition, observe that Lemma 5.2 ii) and the definition of gi in (5.12) imply that gi is
strictly increasing from the left at ti = Ti(y) for each i ∈ [m], so that the additional hypotheses
(a) of Proposition 6.17 is satisfied at T(y) for each y ∈ Y . Applying Proposition 6.17 for each
y ∈ Y separately, we conclude that

γ⃗(∥T(y)∥1) = γ⃗(s(y)) = T(y), ∀y ∈ Y. (6.13)

Lemmas 5.3 and 6.12, joint with the fact that Y is dense in R+, now imply the stated claim.

Recall that here and above x and ρ⃗ satisfy (2.15), and that y 7→ T(y) depends on x and ρ⃗,
while the map s 7→ γ⃗(s) is determined by x. Our next goal is to prove Theorem 2.8(3) which
includes the hypothesis that T(y) ∈ Rm

+ . We therefore fix a y such that T(y) ∈ Rm
+ . This

simplifies our analysis of the optimization problem (5.15).
Indeed, we can now proceed in a way analogous to that in Section 5.3, relying on the

powerful Theorem 6.18. We can now append an additional condition t⃗ = γ⃗(∥t⃗∥1) to our
optimization problem (5.15), with any given j ∈ [m] as the reference index. The new and
equivalent optimization problem is

t⃗ = γ⃗(s),

s = ∥t⃗∥1 = ∥γ⃗(s)∥1,
xj(γ⃗(s)−) = −ρjy,
s→ min .

(6.14)

The first two lines in (6.14) rely on (P3) and Theorem 6.18, the third line comes from (5.2),
and the final line specifies the optimization rule. After solving for s(y) ≡ s(y,x, ρ), we will
use it to find

T(y) = γ⃗(s(y)). (6.15)

It is important to note that s(y) solves simultaneously each and every optimization problem{
xj(γ⃗(s)−) = −ρjy,
s→ min,

, j ∈ [m],

in complete analogy to (5.19)–(5.20). The above can be rewritten as T(y) = γ⃗(s(y)), where
for all y ∈ R+

s(y) = min{s ≥ 0 : xj(γ⃗(s)−) = −ρjy}, ∀j ∈ [m]. (6.16)

We note that y 7→ s(y) is a left-continuous non-decreasing function. Indeed, xj can be replaced
in (6.16) with xj from (5.5), and since xj is non-increasing and continuous, we have that

s(y) = min

{
s ≥ 0 : − 1

ρj
xj(γ⃗(s)) ≥ y

}
= inf

{
s ≥ 0 : − 1

ρj
xj(γ⃗(s)) ≥ y

}
, y ≥ 0,

so that s is the left-continuous generalised inverse of − 1
ρj
xj ◦ γ⃗. Furthermore, if y ∈ Y (where

Y is the “good set” from the proof of Theorem 6.18) then it is easy to see that s(y) = s̃(y)
where

s̃(y) := min{s ≥ 0 : xj(γ⃗(s)) = −ρjy}, ∀j ∈ [m]. (6.17)
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Indeed, the condition in (6.16) is satisfied earlier than the condition in (6.17), so that s(y) ≤
s̃(y) for all y. However, if y ∈ Y , then s(y) also solves (6.17), implying the reversed inequality.

Now define for each i ∈ [m]

Si(y) = inf

{
s ≥ 0 : xi ◦ γ⃗(s−) = lim

u↑s
xi ◦ γ(u) = −ρiy

}
, y ≥ 0. (6.18)

Note that s 7→ xi ◦ γ⃗(s) is again a rcll (or càdlàg) function on [0,+∞), with no negative
jumps. Therefore, when Si(y) < ∞, inf could be replaced by min. Moreover, it is easy to see
that Si is again a left-continuous and non-decreasing function.

Corollary 6.19. The maps y 7→ Si(y) and y 7→ s(y) are identical for each i ∈ [m]. In particu-
lar, whenever T(y+) ∈ Rm

+ then Si(y+) <∞ and

Si(y+)− Si(y) = ∥T(y+)−T(y)∥1

for all i ∈ [m].

Proof. For the first part of the statement, it is enough to show that s and Si coincide on the
dense set Y , because both Si and s are left-continuous functions.

Comparing the conditions in (6.17) and in (6.18), it is clear that Si(y) ≤ s̃(y) for any y.
However if y ∈ Y , then s(y) = s̃(y) implying

Si(y) ≤ s(y), y ∈ Y.

To prove the reversed inequality, we use the fact that xi (and therefore xi ◦ γ⃗) has no non-
negative jumps for each i ∈ [m] and the monotonicity and continuity of γ⃗. More precisely, γ⃗
can be either strictly increasing from the left at r, or constant on some interval (r − ε, r] of
positive length. In the former case, xi ◦ γ⃗(r−) equals xi ◦ (⃗γ(r)−), while in the latter case
xi ◦ γ⃗(r−) = xi ◦ γ⃗(r) ≥ xi(γ⃗(r)−). The hereby verified inequality

xi ◦ γ⃗(r−) ≥ xi(γ⃗(r)−), r ≥ 0,

implies that the condition in (6.16) is satisfied earlier than that in (6.18), therefore

s(y) ≤ Si(y), y ∈ [0,∞),

which concludes the argument for s ≡ Si.
The second part of the statement directly follows from the (strict) monotonicity of y 7→

T(y) yielding ∥T(y+)−T(y)∥1 = ∥T(y+)∥1 − ∥T(y)∥1.
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Lévy fields, Electron. J. Probab. 25 (2020), Paper No. 161, 26. MR 4193902

[17] Loı̈c Chaumont and Marine Marolleau, Extinction times of multitype continuous-state
branching processes, Annales de l’Institut Henri Poincare (B) Probabilites et statistiques,
vol. 59, Institut Henri Poincaré, 2023, pp. 563–577.
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