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Motivation: Stochastic Gradient Descent

Toy simulation: Recognizing hand-written digits

Digit Recognition

Digit Recognition
- Clear
Clear
Pleasselec the number of perons in 2 hidden layers:————————

Pleaseselec the number of eurons in2 hidden lyers . o o0
X1 X5 loxi0 16X16 32X32 © 50X50
16x16 nx0 o s0x50

Digit Recognition

@ MNIST database (used 15 000 data for
training)

@ Neural network with two hidden layers

@ (stochastic) gradient descent

@ accuracy — 93% on testing data, 68% — on

Please select the number of neurons in 2 hidden layers:

o o o ‘ hand-writing inputs
Simulation done by Bohdan Tkachuk Link: http://54.72.31.237

(student at Applied College of Yuriy Fedkovych Chernivtsi National University, Ukraine)
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Supervised Learning

Give some data {(0;,7i), i € I}, the main goal of supervision learning is to predict a new
v given a new 6.
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Supervised Learning

Give some data {(0;,7i), i € I},
v given a new 6.
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the main goal of supervision learning is to predict a new
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55 every pixel) _ N
[ ~;i — corresponding digit
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Supervised Learning

Give some data {(0;,7i), i € I},
v given a new 6.

VA EHLWN~
SdSAd e -0

QNN GCUTWPY -0

DS LU~
< D od ey —Q
O~y ponLwh N
NI CNEWNNC
SRNTwLPY—-0Q
L RO TNV PNMNN
SR I NARY W ~D
RN I NV S S VIRV
DN NNLOHL~0

NIST database

SLEY O LWW =

the main goal of supervision learning is to predict a new

0oo

V7

22 A

?\ i 3 6; — pictures (vector with coordinates coding
55 every pixel) _ N

[ ~;i — corresponding digit

777

g8

499

Assume that 6; ~ P i.i.d. and f(6;) = v; (in general: 7; may not be a deterministic
function of 0)

Vitalii K

kyi (Hamburg University)
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Neural Network

Hidden Layers

Input Layer Output Layer [~} L c N —_ number Of Iayers
(.\\//.‘
\\?0/ AN '//. @ di,...,d; — dimension of each layer

X DRI

I X R
//»“‘V""\\' ZLN
e\ AN

@ o — activation functions (o(x) = (1 4+ ™),
o(x) = max(x,0),...)
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Neural Network

Hidden Layers

Input Layer

—H)
O -S-S=%

XX
R BEE RS
DESAAE RIS ZH
> KX %
R ERSIELE

Output Layer @ L € N — number of layers

@ di,...,d, — dimension of each layer

@ o — activation functions (o(x) = (1 4+ ™),
o(x) = max(x,0),...)

PSR A

Motion of "signals” from layer to layer:

0 = (a((W0 + b)),
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Neural Network

Hidden Layers

Input Layer

—H)
AN
O F %

O RS
R BEE RS
DESAAE RIS ZH
S K X 7
S NS SRS

Output Layer @ L € N — number of layers

@ di,...,d, — dimension of each layer

@ o — activation functions (o(x) = (1 4+ ™),
o(x) = max(x,0),...)

PSR A

Motion of "signals” from layer to layer:

0 = (a((W0 + b)),

Output v = f(6) is approximated by f(6; z) (in this example z = (W, by, Wa, by, .. .)
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Neural Network

Hidden Layers

Output Layer @ L € N — number of layers

Input Layer

@ di,...,d, — dimension of each layer

@ o — activation functions (o(x) = (1 4+ ™),
o(x) = max(x,0),...)
Motion of "signals” from layer to layer:

0 = (a((W0 + b)),

Output v = f(6) is approximated by f(6; z) (in this example z = (W, by, Wa, by, .. .)
We measure the distance between f and f(+; z) by the risk function

R(z) :=Epl(f(0),f(6; 2))
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Stochastic Gradient Descent

Set 5 B
R(z,0) := I(f(0),f(0;z)), R(z)=EpR(z,0) — min

P. Mertikopoulos, N. Hallak, A. Kavis, V. Cevher '20
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Motivation: Stochastic Gradient Descent _
Stochastic Gradient Descent

Set 5 B
R(z,0) := I(f(0),f(0;z)), R(z)=EpR(z,0) — min

P. Mertikopoulos, N. Hallak, A. Kavis, V. Cevher '20

Stochastic Gradient Descent: taking z(0) € RY define
Z(t,'+1) = Z(t,') — QVR(Z(t[+1), 9,‘)

for learning rate «, t; = ai and 0; ~ P —i.i.d.

Vitalii K kyi (Hamburg University) SMF, MFL and DSGD June 20, 2024 6/26
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Stochastic Differential Equation as Limiting Dynamics

Strategy: The systematic understanding of SGD dynamics has to rely on the

identification of universal structures that are invariant to many degrees of freedoms

(choice of loss function, architecture of network ...), while retaining the essential
properties of SGD.

Z(t,url) = Z(t,') — VR(Z(t,'),e,')At

Vitalii K kyi (Hamburg University)

SMF, MFL and DSGD

June 20, 2024



Stochastic Differential Equation as Limiting Dynamics

Strategy: The systematic understanding of SGD dynamics has to rely on the

identification of universal structures that are invariant to many degrees of freedoms
(choice of loss function, architecture of network ...), while retaining the essential

properties of SGD.
Z(t,'+1) = Z(t,‘) — VR(Z(t,‘)79,')At
=z(t)) — VEgR(...) At + VAt (VEgR(...) — VR(z(t;),6n)) VAt
—— e ad
R(z(t) Ve

G(z(t;),0;)
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Motivation: Stochastic Gradient Descent _
Stochastic Differential Equation as Limiting Dynamics

Strategy: The systematic understanding of SGD dynamics has to rely on the
identification of universal structures that are invariant to many degrees of freedoms

(choice of loss function, architecture of network ...), while retaining the essential
properties of SGD.

Z(t,'+1) = Z(t,‘) — VR(Z(t,‘)79,')At
=z(t;)) — VEgR(...) At + VAt (VEgR(...) — VR(z(ti),0,)) VAL
—— e ad
R(z(t;)) =Va =G(z(1;),0;)
is the Euler scheme for the SDE

dZ, = —VR(Z:)dt + /aX?(Z:)dw,
where X(z) = EpG(z,0) ® G(z,0).
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Stochastic Differential Equation as Limiting Dynamics

Strategy: The systematic understanding of SGD dynamics has to rely on the
identification of universal structures that are invariant to many degrees of freedoms
(choice of loss function, architecture of network ...), while retaining the essential
properties of SGD.

Z(t,'+1) = Z(t,‘) — VR(Z(I‘.‘,’),(),‘)AI‘
=z(tj)) — VEgR(...) At + VAt (VEsR(...) — VR(z(ti),0,)) VAL
—— e ad
R(z(t;)) =Va =G(z(1;),0;)
is the Euler scheme for the SDE
dZ, = —VR(Z:)dt + /aX?(Z:)dw,
where X(z) = EpG(z,0) ® G(z,0).

Theorem (Li, Tai, E '19, JMLR)

For f, R and Y2 smooth enough with bounded derivatives one has

fgg\Ef(Z(tf)) — Ef(Z;)| = O().
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Stochastic Differential Equation as Limiting Dynamics

Strategy: The systematic understanding of SGD dynamics has to rely on the
identification of universal structures that are invariant to many degrees of freedoms
(choice of loss function, architecture of network ...), while retaining the essential
properties of SGD.

Z(t,'+1) = Z(t,‘) — VR(Z(I‘.‘,’),(),‘)AI‘
=z(tj)) — VEgR(...) At + VAt (VEsR(...) — VR(z(ti),0,)) VAL
—— e ad
R(z(t;)) =Va =G(z(1;),0;)
is the Euler scheme for the SDE
dz, = —VR(zt)dt—%va(Zt)th + VaXi(Z)dw,

where ¥(z) = EpG(z,0) ® G(z,0).

Theorem (Li, Tai, E '19, JMLR)

For f, R and Y2 smooth enough with bounded derivatives one has

sup |Ef(z(t)) — Ef(Z,,)| = O(a?).

t;<T
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Some Limitation of Modified SDE

1. Limited regularity of Yo

Ex. X(z) =22 = ¥i(z)=z|.
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Some Limitation of Modified SDE

1. Limited regularity of Yo
Ex. X(z) =22 = ¥i(z)=z|.
2. The SDE does not catch n-point motion:
Let zc(t;) be the SGD dynamics started from z(0)
zi(tiv1) = zi(ti) — OCVRS(Zk(ti)-, 0i)

for learning rate o, t; = ai and 0; ~ P —i.i.d.

Then
(21(t), .- za() % (Zs), - -, ZE).

for solutions of the Modified SDE started from Z§ = z(0).

(e.g. important for a dynamical systems approach [Wu et al. '18; Sato et al. '22])

Vitalii K kyi (Hamburg University) SMF, MFL and DSGD June 20, 2024 8/26
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Neural network with one hidden layer

Input Layer Hidden Layer Output Layer

Network with a single hidden layer:

f(0; x) = % > o0, %)

opas [ - <¢(9 ) I/ﬂ>*
where x, € R, k € {1,...,n}, are
parameters which have to be found,

n__1 n S
v = ;Zkzloxk

by Nicola Manzini

[ Chizat, Bach, Mei, Nguye, Rotskoff, Sirignano, Vanden-Eijnden... ]
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Neural network with one hidden layer

Input Layer Hidden Layer Output Layer

Network with a single hidden layer:

%Z@(e,xk)
= <¢'(9 ) I/ﬂ>,~

f2(0; x)

where x, € R, k € {1,...,n}, are

parameters which have to be found,
1 N

V= D req Ox

by Nicola Manzini

[ Chizat, Bach, Mei, Nguye, Rotskoff, Sirignano, Vanden-Eijnden... ]

Generalization error
1 1/
£x) = 3ERIF0) = ) = 5 [ 1F(0) = hl0:)7P(a),
where P is the distribution of ;.
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Stochastic gradient descent

Let xx(0) ~ po —i.i.d.
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Motivation: Overparameterized Stochastic Gradient Descent _
Stochastic gradient descent

Let xx(0) ~ po —i.i.d.

The parameters xi, k € {1,...,n} can be learned by stochastic gradient descent

Xk(t,';l) = Xk(t,‘) — ka (%‘f(();) — f’n(Oi;x)P) At

where At — learning rate, t; = iAt, 6; ~ P —i.i.d.,
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Motivation: Overparameterized Stochastic Gradient Descent _
Stochastic gradient descent

Let xx(0) ~ po —i.i.d.
The parameters xi, k € {1,...,n} can be learned by stochastic gradient descent

1

Xk(t,';l) = Xk(t,‘) — ka <§‘f(0;) — f’n(Oi;x)P) At

= Xk(t,‘) — (fn(/),';X) — f((),)) VXkCD(()i.,Xk(ti))At

where At — learning rate, t; = iAt, 6; ~ P —i.i.d,,
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Motivation: Overparameterized Stochastic Gradient Descent _
Stochastic gradient descent

Let Xk(O) ~ o — i.i.d.
The parameters xi, k € {1,...,n} can be learned by stochastic gradient descent
1
i) = x(8) = Vo (5160) = 10 0)F) A
= xi(ti) — (fa(0i; x) — £(6i)) Vi (0, xic(ti)) At

= xi(t;) + (VF(xk t), 0; ——vak xk(t;) x,(t,-),9,-)>At

where At — learning rate, t; = iAt, §; ~ P —i.i.d.,
F(x,0) = f(8)®(8,x) and K(x,y,0) = (8, x)P(8,y).
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Stochastic gradient descent

Let Xk(O) ~ o — ii.d.

The parameters xi, k € {1,...,n} can be learned by stochastic gradient descent

Xk(t,:H) = Xk(t,') — ka (%‘f(@,) — fn(ei;x)‘z> At

= Xk( i) - (fn(ﬁ,v;)() - f((),)) kad)(é),-,xk(t;))At

= Xk(t,') + <VF(X/<(1‘,‘),9,') — <V><K(Xk()‘.‘,')1 ~,9,‘),U£>>At

where At — learning rate, t; = iAt, 0; ~ P —iid., v =137 6,0,
F(x,0) = f(0)®(0,x) and K(x,y,0) = (0, x)P(0,y).
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Stochastic gradient descent

Let Xk(O) ~ o — ii.d.

The parameters xi, k € {1,...,n} can be learned by stochastic gradient descent

Xk(t,:H) = Xk(t,') — ka (%‘f(@,) — fn(ei;x)‘z> At

= xk(ti) — (£a(0i; x) = £(0)) Vi @(0i, xi(ti)) At
= Xk(t,') + <VF(X/<(1‘,‘),9,') — <V><K(Xk()‘.‘,')1 ~,9,‘),U£>)At
= Xk(t,‘) + V(Xk(t,')7 I/g., 0,-)At

where At — learning rate, t; = iAt, 0; ~ P —iid., v/ =137 6,0,
F(x,0) = f(0)®(0,x) and K(x,y,0) = (0, x)P(0,y).
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Classical SDE for Overparametrized SGD Dynamics

Stochastic gradient descent

Xk(t,;l) = Xk(t,') + V(xk(t,-),z/g,ﬁ,-)At

Vitalii K kyi (Hamburg University) SMF, MFL and DSGD June 20, 2024




Motivation: Overparameterized Stochastic Gradient Descent _
Classical SDE for Overparametrized SGD Dynamics

Stochastic gradient descent

xi(tivn) = xu(ti) + V(i (t:), vi,, 0i) At
= () +EgV(... ) At + VAL (V(...) —EgV(...))VAL
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Classical SDE for Overparametrized SGD Dynamics

Stochastic gradient descent

xi(tivn) = xe(ti) + V(xu(t:), vi,, 0i) At

:Xk(t,') + EgV(...)At+ VAt(V(...)fEHV(...))'\/At
—— S~~~
=V(x(t),vg) =Ve =G0k (£, ,0;)

i
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Classical SDE for Overparametrized SGD Dynamics

Stochastic gradient descent

xi(tivn) = xe(ti) + V(xu(t:), vi,, 0i) At

= x(t) + EgV(...)At+@(V(...)fEHV(...))\/E
=V (x(t;),vf)

i

Va =Gk (t1),vf;,0))

is the Euler-Maruyama scheme for the SDE

dXi(t) = V(Xe(t), 1uf)dt + Va(E2)(X(2), 1f)dB(t), Kk € {L,...,n}
where H? = % Z;’:l 6X;<t)v Zk,/(X,N) = EQG(X/(,}L,Q) & G(X/ﬂ#70) and
B — n-dim Brownian motion.
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Classical SDE for Overparametrized SGD Dynamics

Stochastic gradient descent

xi(tivn) = xe(ti) + V(xu(t:), vi,, 0i) At

:Xk(t,')+ EgV(...)At+ VAt(V(...)fEHV(...))vAt
—— S~~~
=V(x(t),vg) =Ve =G0k (£, ,0;)

i

is the Euler-Maruyama scheme for the SDE
dXi(t) = V(Xe(t), 1uf)dt + Va(E2)(X(2), 1f)dB(t), Kk € {L,...,n}

where H? = % Z;’:l 6X;<t)v Zk,/(X, H’) = EQG(X/(, H,y 6) & G(X/, 12 0) and
B — n-dim Brownian motion.

1. .
~> 22 is dn X dn matrix! — Not good for n — oo
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Martingale Problem for Empirical distribution

dXi(t) = V(Xe(t), 1) dt + Va(E2)(X(t), ul)dB(t), k€ {1,...,n}

where p1f = L3577  6x.)0 Zuei(x) = Ak, x1, 1) := Eg G (xk, 11, 0) ® G(x1, . 0)

n
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Martingale Problem for Empirical distribution

dXi(t) = V(Xi(t), u)dt + v/a(Z3)u(X (), u)dB(t), k € {1,...,n}

where pf = £ 377 Ox(e), Zii(X) = Alxk, xi, 1) := Eo G (x, 11, 0) @ G(xi, 1, 0)

Taking ¢ € C2(R9), we get for the empirical measure pf

t

n n « * n n n n
(@, ut) = (o, po) + 5/ <V2¢ : A('v,“s)-,,“'s> d5+/ (V- V(- 13), pus) ds
0

0
+ Mart.,
where A(x, 1) = A(x, x, 1)
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Martingale Problem for Empirical distribution

dXi(t) = V(Xi(t), u)dt + v/a(Z3)u(X (), u)dB(t), k € {1,...,n}

where pf = - > Ox;(e)r Lht(x) = Alxi, xi, 1) :=Eo G (xi, 11, 0) @ G(x1, p, 6)
Taking ¢ € C2(R9), we get for the empirical measure pf
ot
C

n n X * n n n n
(@, ut) = (o, po) + 5/ <V2¢ : A('?,U's)-,,“'s>d5+/ (V- V(- 13), pus) ds
0 0

+ Mart.,

where A(x, 1) = A(x, x, ) and

Mart), =a [ [ (9600 © Vil : Ay, (b))

[Rotskoff, Vanden-Eijnden, CPAM, 2022]
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Martingale Problem for Empirical distribution

dXi(t) = V(Xi(t), u)dt + v/a(Z3)u(X (), u)dB(t), k € {1,...,n}

where p1f = L3577  6x.)0 Zuei(x) = Ak, x1, 1) := Eg G (xk, 11, 0) ® G(x1, . 0)

Taking ¢ € C2(R9), we get for the empirical measure pf

n n « * n n 't n n
(@, ut) = (o, po) + 5/ <V2¢ : A('?,U's)-,,“'s>d5+/ (V- V(- 13), pus) ds
0 0

+ Mart.,

where A(x, 1) = A(x, x, ) and

Mart), =a [ [ (9600 © Vil : Ay, (b))

[Rotskoff, Vanden-Eijnden, CPAM, 2022]
The martingale problem does not depend on number of parameters (particles), but

@ well-posedness is not clear;

@ comparison with SGD is not clear
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Disadvantages of Existing Models

© SGD and Stochastic Modified Equation:

dZ, = —VR(Z:)dt — %V\VR(L)th +VaXi(Z)dw
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© SGD and Stochastic Modified Equation:

dZ, = —VR(Z:)dt — %V\VR(L)th +VaXi(Z)dw

@ Regularity of ¥
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© SGD and Stochastic Modified Equation:

dZ, = —VR(Z:)dt — %V\VR(L)th +VaXi(Z)dw

@ Regularity of bk
@ non-comparable n-point motions
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Motivation: Overparameterized Stochastic Gradient Descent _
Disadvantages of Existing Models

© SGD and Stochastic Modified Equation:

dZ, = —VR(Z:)dt — %V\VR(Zt)th +VaXi(Z)dw

@ Regularity of yi
@ non-comparable n-point motions

@ Overparametrized SGD and Measure Dependent SDE
dXi(t) = V(Xi(t), uf)dt + Va(E2)u(X(2), uf)dB(t), k€ {1,...,n}

where uf = 1S Sx. () Tui(x) = A(xi, x1, 1) := Eo G (xi, 11, 0) @ G(x1, 1, 0)

n
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Disadvantages of Existing Models

© SGD and Stochastic Modified Equation:

dZ, = —VR(Z:)dt — %V\VR(Zt)th +VaXi(Z)dw

@ Regularity of yi
@ non-comparable n-point motions

@ Overparametrized SGD and Measure Dependent SDE
dXi(t) = V(Xi(t), uf)dt + Va(E2)u(X(2), uf)dB(t), k€ {1,...,n}

where uf = 1S Sx. () Tui(x) = A(xi, x1, 1) := Eo G (xi, 11, 0) @ G(x1, 1, 0)

n

@ X depends on n
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Motivation: Overparameterized Stochastic Gradient Descent _
Disadvantages of Existing Models

© SGD and Stochastic Modified Equation:

dZ, = —VR(Z:)dt — %V\VR(Zt)th +VaXi(Z)dw

@ Regularity of yi
@ non-comparable n-point motions

@ Overparametrized SGD and Measure Dependent SDE
dXi(t) = V(Xi(t), uf)dt + Va(E2)u(X(2), uf)dB(t), k€ {1,...,n}

where pf = 1577 Sx(0), Tua(x) = A(xi, x1, ) := Eo G (i, 11, 0) @ G (0, 1, 0)

@ X depends on n
@ martingale problem for p" is not easy to be analyzed
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Motivation: Overparameterized Stochastic Gradient Descent _
Disadvantages of Existing Models

© SGD and Stochastic Modified Equation:

dZ, = —VR(Z:)dt — %V\VR(Zt)th +VaXi(Z)dw

@ Regularity of yi
@ non-comparable n-point motions

@ Overparametrized SGD and Measure Dependent SDE
dXi(t) = V(Xi(t), uf)dt + Va(E2)u(X(2), uf)dB(t), k€ {1,...,n}

where pf = 1577 Sx(0), Tua(x) = A(xi, x1, ) := Eo G (i, 11, 0) @ G (0, 1, 0)

@ X depends on n
@ martingale problem for p" is not easy to be analyzed

Our Goal: Propose a new model (some stochastic flow), that would remove this
disadvantages
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Stochastic Modified Flow Driven by Inf.-dim Noise _
SDE Driven by Inf-Dim Noise for SGD Dynamics

Stochastic gradient descent
Xk(t,'+1) = Xk(t,') + V(Xk(t,'), uQ,(),-)At
:Xk(t,') + EQV(..‘)At“F VAt(V(...)ng\/(...))VAt
. , ~——

=V0a(ti).vi) =va =G (xi(t),v1.,07)
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SDE Driven by Inf-Dim Noise for SGD Dynamics

Stochastic gradient descent

Xk(t,'+1) = Xk(t,') —+ V(Xk(t,'), l/g, 0,-)At
xi(t) + EoV(...) At + VAt (V(...) —EaV(...))VAt
—— S~~~

=V0u(t).vf) =V =Ga(1).v.0;)

is the Euler-Maruyama scheme for the SDE
dXi(t) = V(xk(t),undtwa/ G(Xu(t), 1l 0)W(d0, dt), k€ {1,...,n}
Jo

where 1] = 137" 6x.(;), W — white noise on L(©, P) (P is the distribution of ).
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Stochastic Modified Flow Driven by Inf.-dim Noise _
Stochastic Modified Flow and Martingale Problem

Distribution Dependent Stochastic Flow:

dX(u,t) = V(X(u,t), pe dt+f/ t), pe, )W (d0, dt)
X(u,0)=u, pe=pooX" ( t)

[Dorogovtsev, Kotelenez, Pilipenko, F-Y. Wang,...]
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Distribution Dependent Stochastic Flow:

dX(u,t) = V(X(u,t), pe dt+f/ t), pe, )W (d0, dt)
X(u,0)=u, pe=pooX" ( t)

[Dorogovtsev, Kotelenez, Pilipenko, F-Y. Wang,...]

Using 1td 's formula, we come to the Stochastic Mean-Field Equation:

e =~V - (V( pdue)de + 2T - (A, pe)p)dt + Va¥ - / G-, e, O)e W(dO, dt)
Jo

where A(xk, it) = Eg G(xk, pt) @ G (X, pt)-
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Stochastic Modified Flow and Martingale Problem

Distribution Dependent Stochastic Flow:

dX(u,t) = V(X(u,t), pe dt+f/ t), pe, )W (d0, dt)
X(u,0)=u, pe=pooX" ( t)

[Dorogovtsev, Kotelenez, Pilipenko, F-Y. Wang,...]

Using 1td 's formula, we come to the Stochastic Mean-Field Equation:
e =~V - (V( pdue)de + 2T - (A, pe)p)dt + Va¥ - / G-, e, O)e W(dO, dt)
Je
where A(xk, it) = Eg G(xk, pt) @ G (X, pt)-

Well-posedness, comparison with SGD obtained in [Gess, Gvalani, K. '22]
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Stochastic Modified Flow Driven by Inf.-dim Noise _
Stochastic Modified Flow and Martingale Problem

Distribution Dependent Stochastic Flow:

dX(u,t) = V(X (u,t), pe)dt + f/ t), pe, O)W(dO, dt)
X(u,0) =u, pe=pooX (1)
[Dorogovtsev, Kotelenez, Pilipenko, F-Y. Wang,...]
Using 1td 's formula, we come to the Stochastic Mean-Field Equation:
dpe = =V - (V(-, ) pe) dt + %V2 L (AC, pe)pe)dt + /a Vv - /e G(-, pe, O)pe W(d0, dt)
where A(xk, it) = Eg G(xk, pt) @ G (X, pt)-
Well-posedness, comparison with SGD obtained in [Gess, Gvalani, K. '22]

~» The martingale problem for this equation is the same as in
[Rotskoff, Vanden-Eijnden, CPAM, '22]
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Stochastic Modified Flow Driven by Inf.-dim Noisc ~ ||
Distribution Dependent Stochastic Modified Flow
Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, 0; ~ P —i.i.d.

xk(tiv1) = x(t;) + V(x(ti), ve, 0:)At, ke {l,...,n},

1 n N
where v = 2370 0y 1)
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Distribution Dependent Stochastic Modified Flow

Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, 0; ~ P —i.i.d.

xi(tiv1) = x(ti) + V(x(ti), ve, 0i)At, k€ {1,

where v{ = 2377 6, ).
Distribution Dependent Stochastic Flow:

dX(u,t) = V(X (u,t), ue)dt
+ \/E/ G(X(u, t), pe, O)W(d6, dt),
JOo

X(U,O):U, /lt:llﬂoxt717

where is a cylindrical Wiener process on L»(©, P).
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Distribution Dependent Stochastic Modified Flow

Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, 0; ~ P —i.i.d.

Xk(t,'+1) = Xk(t,‘) + V(Xk(t,‘)., l/tnl,., 9,-)At, k € {1., e n}7

where v} = % D he1 O (6)-
Distribution Dependent Stochastic Flow:

dX(u,t) = V(X (u,t), ue)dt
4 \6/ G(X(u, £), s, 0)W(d0, dt),
JO

X(U,O):U, /'Lt:llﬂoxt717

where is a cylindrical Wiener process on L,(©, P).

Theorem 3 (Gess, Kassing, K. '24, JMLR)

Let 1o € P> and V, G be regular enough. Then for every ® € C4(P»)

Vitalii K

sup [E®(ue,) — Ed(vy)| < Ca+ C/EW2(po, 7).
§<T
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Distribution Dependent Stochastic Modified Flow
Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, ;i ~ P —i.i.d.
Xk(t,'+1) = Xk(t,‘) + V(Xk(t,‘)., l/g, 0,-)At, k € {1, e n},

where v{ = 2577 6, ).
Distribution Dependent Stochastic Modified Flow:

dX(u,t) = V(X(u, ), pe)dt — T VIV(X(u, 8), o) Pt = Z(DIV(X(u, £), o), pe) lt
+\/E/ G(X(u, t), e, 0) W(d0, dt),
X(0.0) =t oo X,
where is a cylindrical Wiener process on L>(©, P).

Theorem 3 (Gess, Kassing, K. '24, JMLR)

Let po € P2 and V, G be regular enough. Then for every ® € Ci(P»)

sup [E®(ug ) — E®(ve,)| < Car+ Cy/EWE (o, 15):
t<T
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Distribution Dependent Stochastic Modified Flow
Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, ;i ~ P —i.i.d.
Xk(t,'+1) = Xk(t,‘) + V(Xk(t,‘)., l/g, 0,-)At, k € {1, e n},

where v{ = 2577 6, ).
Distribution Dependent Stochastic Modified Flow:

dX(u,t) = V(X(u, ), pe)dt — T VIV(X(u, 8), o) Pt = Z(DIV(X(u, £), o), pe) lt
+\/E/ G(X(u, t), e, 0) W(d0, dt),
X(0.0) =t oo X,
where is a cylindrical Wiener process on L>(©, P).

Theorem 3 (Gess, Kassing, K. '24, JMLR)

Let po € P2 and V, G be regular enough. Then for every ® € Ci(P»)

sup [Ed(ur,) — Ed(vy,)| < Ca? 4+ Cy/EW2 (o, 1g).
§<T
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Corollary: n-point motion for SGD

Assume that V(x,v,0) = —VR(x,0), then

xk(tiv1) = xe(ti)+V(x(t:), ve, 0:)At, ke {l,...,n},

describes n-point motion of SGD.
Consider the Distribution Dependent Stochastic Modified Flow:

dX(u,t) =

X(u,0) =

V(X (u, ), pue)dt — %V\V(X(u, 0, )Pt = L (DIV(X(u, 1), o), et
+Va / ). e, 0) W(d0, dt),
u, pe=pooX; "

where is a cylindrical Wiener process on L,(©, P),
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Corollary: n-point motion for SGD

Assume that V(x,v,0) = —VR(x,0), then

Xk(t,'+1) = Xk(t,‘)7VR(Xk(tj), 9,‘)At, k € {1, ey n},

describes n-point motion of SGD.
Consider the Distribution Dependent Stochastic Modified Flow:

dX(u, t) =

X(u,0) =

V(X (u, ), pue)dt — %V\V(X(u, 0, )Pt = L (DIV(X(u, 1), o), et
+Va / ). e, 0) W(d0, dt),
u, pe=pooX; "

where is a cylindrical Wiener process on L,(©, P),
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Stochastic Modified Flow Driven by Inf.-dim Noise _
Corollary: n-point motion for SGD
Assume that V/(x,v,0) = —VR(x,0), then

Xk(t,'+1) = Xk(t,‘)7VR(Xk(t,‘), 0,—)At, k € {].7 ey n},

describes n-point motion of SGD.

Consider the Bistribution-Dependent Stochastic Modified Flow:
dX(u, t) = —~VR(X(u, t))dt — %VWR(X(U, £))|dt
+ \ﬂ/ G(X(u,t),0)W(d0, dt),
X(u,0) = u, )

where is a cylindrical Wiener process on L>(©, P),G(x,0) = VR(x) — VR(x,0).
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Stochastic Modified Flow Driven by Inf.-dim Noise _
Corollary: n-point motion for SGD
Assume that V/(x,v,0) = —VR(x,0), then

Xk(t,'+1) = Xk(t,‘)7VR(Xk(t,‘), 0,—)At, k € {].7 ey n},

describes n-point motion of SGD.

Consider the Bistribution-Dependent Stochastic Modified Flow:
dX(u, t) = —~VR(X(u, t))dt — %VWR(X(U, £))|dt
+ ﬁ/ G(X(u, t),0)W(d0, dt),
X(u,0) = u, )
where is a cylindrical Wiener process on L>(©, P),G(x,0) = VR(x) — VR(x,0).
Corollary (Gess, Kassing, K. '24, JMLR)

Define Xi(t) := X(x«(0), t), k € [n]. Then for every f € C3(R")
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Stochastic Modified Flow Driven by Inf.-dim Noise _
Stoch. Modified Flow vs Stoch. Modified Equation

Stochastic Modified Flow:
dX(u,t) = —VR(X(u, t))dt — %V\VR(X(U, £))|dt
+ﬁ/ G(X(u, t),0) W(d0, dt),
X(u,0)= u, )

where is a cylindrical Wiener process on L>(©, P), G(x,0) = VR(x) — VR(x,0).

Vitalii K kyi (Hamburg University) SMF, MFL and DSGD June 20, 2024




Stochastic Modified Flow Driven by Inf.-dim Noise _
Stoch. Modified Flow vs Stoch. Modified Equation

Stochastic Modified Flow:

dX(t) = —VR(X(t))dt — i“va(X(t))th

+\F/ W(de, dt),

where is a cylindrical Wiener process on L>(©, P), G(x,0) = VR(x) — VR(x,0).
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Stoch. Modified Flow vs Stoch. Modified Equation

Stochastic Modified Flow:
dX(t) = —VR(X(t))dt — ‘lva(X(t))th

+f/ W(de, dt),

where is a cylindrical Wiener process on L>(©, P), G(x,0) = VR(x) — VR(x,0).

Stochastic Modified Equation
dX, = —VR(X.)dt — %V\VR(Xt)fdt + Vax?(X,)dw,

where X(x) = EoG(x,0) ® G(x,0).
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Stoch. Modified Flow vs Stoch. Modified Equation

Stochastic Modified Flow:

dX(t) = —VR(X(t))dt — ‘lva(X(t))Edt

+ f/ W(d6, dt),

where is a cylindrical Wiener process on L>(©, P), G(x,0) = VR(x) — VR(x,0).
Stochastic Modified Equation

dX: = —VR(X.)dt — %V\VR(Xt)th + Vax?(X,)dw,

where X(x) = EoG(x,0) ® G(x,0).
@ SMF discribes and SME have the same martingale problem;
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dX: = —VR(X.)dt — %V\VR(Xt)th + Vax?(X,)dw,

where X(x) = EoG(x,0) ® G(x,0).
@ SMF discribes and SME have the same martingale problem;
@ SMF describes n-point motion of SGD, SME — doesn't;
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Stoch. Modified Flow vs Stoch. Modified Equation

Stochastic Modified Flow:

dX(t) = —VR(X(t))dt — ‘lva(X(t))Edt

+ f/ W(d6, dt),

where is a cylindrical Wiener process on L>(©, P), G(x,0) = VR(x) — VR(x,0).
Stochastic Modified Equation

dX: = —VR(X.)dt — %V\VR(Xt)th + Vax?(X,)dw,

where X(x) = EoG(x,0) ® G(x,0).
@ SMF discribes and SME have the same martingale problem;
@ SMF describes n-point motion of SGD, SME — doesn't;
@ SMF avoids the irregularity of VI, e.g. ¥(x) = x°.
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Flow structure of overparameterized SGD

The SGD
Xk(ti+1) = Xk(t,‘) + V(Xk(t,'), l/tni, Hi)At, k € {1, ey n},

where v{ = %22:1 Oy, (t) can be build as follows:
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Flow structure of overparameterized SGD

The SGD
Xk(ti+1) = Xk(t',‘) + V(Xk(tf)7 l/tni, Hi)At, k € {1, ey n}.,

where v{ = %22:1 Oy, (t) can be build as follows:

x(u, tiy1) = x(u, 1) + V(x(u, tj), vy, 0i) At,

x(u,0) =u, vy =1y ox(-t)

by taking v := 1g.
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Interpolation of One-Step estimate

Set (t = At = a)
SW(po) :=EpW(vy,) = EpW (oo x(-, t1)) ")

and
TeW (o) := EpW(jue) = EpW(po 0 X(-, t)71).

Vitalii K kyi (Hamburg University) SMF, MFL and DSGD June 20, 2024




Interpolation of One-Step estimate

Set (t = At = a)

SV (o) :=EpW(vy) = EpW (1o o x(, tl))fl)
and

TeW (o) := EpW(jue) = EpW(po 0 X(-, t)71).
Then for t, = nae = nAt

E® (0 0 (-, t0) ) ~E® (0 0 X, 1) = E®(ur,) — E®(pe,) = S"®(pio) — Tr, ®(110)
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Interpolation of One-Step estimate
Set (t = At =a)
SW(po) :=EpW(vy,) = EpW (oo x(-, t1)) ")

and
TeW(uo) = EpW(ur) = EpW(po 0 X (- 1) 7).

Then for t, = na = nAt

E® (10 0 x(+, tn) ) ~E® (110 0 X, 1) = E® (1) — E®(ps,) = S"®(0) — T, P (p10)

n—1
=3 (8" T 0(0) = ST, (1))
i=0
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Interpolation of One-Step estimate

Set (t = At =a)
SW(po) = EpW(vy,) = EpW(po o x(-, 11)) ™)

and
TeW (o) := EpW(pe) = EpW(po 0 X(-, 1))

Then for t, = nae = nAt

E®(po 0 (-, tn) ) —E® (0 0 X, ') = E®(vs,) — ED(p1g,) = S"P(p10) — Te, P(120)

(8" T ®(10) = 8" T, 0(10))

3
|

i=0

n—1
D ST STy (ko) = Ta T, (o)
i=0 —

=:U(tj,p0)
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Interpolation of One-Step estimate

Set (t = At =a)
SW(po) = EpW(vy) = EpW(pio 0 x(-, 11)) )
and

TeW (o) := EpW(jue) = EpW(po 0 X(-, )7 1).

Then for t, = nae = nAt

E®(po 0 (-, tn) ) —E® (0 0 X, ') = E®(vs,) — ED(p1g,) = S"P(p10) — Te, P(120)

1

(8" T ®(10) = 8" T, 0(10))

I
3
|

Il
o

-

n—

S"TTH ST (o) — T T ®(10)
———

=:U(tj,p0)

=0

Since Supuoepz ‘S\U(,U,o)| < SupuoE'Pz ‘\U(H’O)"

n—1

HoEP i—o Mo €Ps

sup Eq’(uoox(wtn)fl)—E‘D(HOOX('Jn)*l)‘ <Y sup |SU(t, po) — Ta U(ti, o).
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Expansions of SW(1o) and P, W (o)

Expansion in Taylor's series w.r.t a = At

SV (o) = V(o) + « /M DV (z, o) - V(z, o) po(dz)

+ () + PRV, o),

where sup,,;cp, [Ri| < C[[V]|c.
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Expansions of SW(1o) and P, W (o)

Expansion in Taylor's series w.r.t a = At

SV (o) = V(o) + « /vd DV (z, o) - V(z, o) po(dz)

+a%(..) + RV, o),

where sup,,;cp, [Ri| < C[[V]|c.

Pu\u(/lo) = W(/Lo) + / »CPSW(/LO)C/S,
J0

where £ = L1 + aL> and

L1V (uo) = /Fd DW(x, uo) - V(x, wo)po(dx),  LoW(po) = ...
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Expansions of SW(1o) and P, W (o)

Expansion in Taylor's series w.r.t a = At

SV (o) = V(o) + « /vd DV (z, o) - V(z, o) po(dz)

+a%(..) + RV, o),

where sup,, cp, |R1| < CH“UHcg-
PoW (o) = V(o) + /.LY LPV(po)ds,
where £ = £; + oL, and h
£rW(o) = | DYoo) - Vi o). LaW(po) = ...
Iterating the equality above, one gets
P () = W(so) + alLxW(so) +* (1 + 325 ) V(o) + 0* oW, ).

where sup,,;cp, [Ro| < C[[W]|cs.
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Comparison of Generators and End of Proof

Fort,=an<T

n—1
sup ‘ECD(HO 0 Zy') = Ed(uo o Xr:l)’ <> sup [SU(t, o) — PaU(ti, o)
HoEP =0 1o EP2
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Comparison of Generators and End of Proof

Fort,=an< T
n—1

sup {mwoozt:l) —Ecb(uooxt:l)] <> sup [SU(ti, po) — PaU(ti, o)

HoEP i—o HoEP2

n—1
<> sup o |Ri(U(t, o), o) — Re(U(ti, o), o)

i—g HoEP2
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Comparison of Generators and End of Proof

Fort,=an< T

n—1

sup ‘ECD(MO 0Z,") = E®(uo o erl)‘ <Y sup |SU(t, o) — PaU(ti, o)
HoEP i—g HoEP2
n—1
< Z sup o’ |Ru(U(ti, po), po) — Ra(U(ti, o), o)
i—g HoEP2
3 2
<« nCHUHCg'A([O,T]xPz) <GTa .
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Comparison of Generators and End of Proof

Fort,=an< T

n—1

sup ‘E¢(uo 0Z,") = E®(uo o szl)‘ <Y sup |SU(t, o) — PaU(ti, o)
HoEP i—g HoEP2
n—1
< Z sup o’ |Ru(U(ti, po), pto) — Ra(U(ti, o), o)
i—g HoEP2
3 2
<« nC||UHCg’4([O,T]><7>2) <GTa .

Proposition [Feng-Yu Wang, J. Evol. Equ., '21]

Let V € C)°(RYxP2), G(-,-,0) € CY*(RYxP2) P-a.s. Then for every & € Cp(P2)
the function U(t, o) = E® (1) is a unique solution to the equation

81’U(t1 /1’0) = ﬁfU(t, /LO),
U(O. /Lo) = q)(/lo).

Moreover, U € Cp*([0, T] x P2) and 0:U € C([0, T] x P»).
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Thank you!
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