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Motivation and derivation of the SPDE _
Supervised Learning

@ Having a large sets of data {(6;,vi), i € I}, 6; ~ P i.id.,
one needs to find a function f : © — R such that f(0;) = ~;.
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Supervised Learning

@ Having a large sets of data {(6;,vi), i € I}, 6; ~ P i.id.,
one needs to find a function f : © — R such that f(0;) = ~;.

@ Usually one approximates f by

where x, € R?, k € {1,...,n}, are parameters which have to be found.
Example: ®(0, xc) = ck - h(AkO + bi), xk = (Ax, bx, ck)
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Motivation and derivation of the SPDE _
Supervised Learning

@ Having a large sets of data {(0;,vi), i € I}, ;i ~ P i.id,,
one needs to find a function f : © — R such that f(0;) = ~;.

@ Usually one approximates f by

1 n

n

fn(0; x) = d(0, xx),

k=1

where x, € R?, k € {1,...,n}, are parameters which have to be found.
Example: ®(0, xc) = ck - h(Ak0 + bi), xk = (Ax, b, ck)

@ We measure the distance between f and f, by the generalization error

£(x) = 3EpF(0) — (65" = %/@ 1£(6) — (605 )2P(d),

where P is the distribution of ;.
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Stochastic gradient descent

Let xx(0) ~ po —i.i.d.
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Motivation and derivation of the SPDE _
Stochastic gradient descent

Let xx(0) ~ po —i.i.d.

The parameters xi, k € {1,...,n} can be learned by stochastic gradient descent

Xk(t,';l) = Xk(t,‘) — ka (%‘f(();) — f’n(Oi;x)P) At

where At — learning rate, t; = iAt, 6; ~ P —i.i.d.,
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Motivation and derivation of the SPDE _
Stochastic gradient descent

Let xx(0) ~ po —i.i.d.
The parameters xi, k € {1,...,n} can be learned by stochastic gradient descent

1

Xk(t,';l) = Xk(t,‘) — ka <§‘f(0;) — f’n(Oi;x)P) At

= Xk(t,‘) — (fn(/),';X) — f((),)) VXkCD(()i.,Xk(ti))At

where At — learning rate, t; = iAt, 6; ~ P —i.i.d,,
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Motivation and derivation of the SPDE _
Stochastic gradient descent

Let Xk(O) ~ o — i.i.d.
The parameters xi, k € {1,...,n} can be learned by stochastic gradient descent
1
i) = x(8) = Vo (5160) = 10 0)F) A
= xi(ti) — (fa(0i; x) — £(6i)) Vi (0, xic(ti)) At

= xi(t;) + (VF(xk t), 0; ——vak xk(t;) x,(t,-),9,-)>At

where At — learning rate, t; = iAt, §; ~ P —i.i.d.,
F(x,0) = f(8)®(8,x) and K(x,y,0) = (8, x)P(8,y).
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Motivation and derivation of the SPDE _
Stochastic gradient descent

Let Xk(O) ~ o — ii.d.

The parameters xi, k € {1,...,n} can be learned by stochastic gradient descent

Xk(t,:H) = Xk(t,') — ka (%‘f(@,) — fn(ei;x)‘z> At

= Xk( i) - (fn(ﬁ,v;)() - f((),)) kad)(é),-,xk(t;))At

= Xk(t,') + <VF(X/<(1‘,‘),9,') — <V><K(Xk()‘.‘,')1 ~,9,‘),U£>>At

where At — learning rate, t; = iAt, 0; ~ P —iid., v =137 6,0,
F(x,0) = f(0)®(0,x) and K(x,y,0) = (0, x)P(0,y).
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Stochastic gradient descent

Let Xk(O) ~ o — ii.d.

The parameters xi, k € {1,...,n} can be learned by stochastic gradient descent

Xk(t,:H) = Xk(t,') — ka (%‘f(@,) — fn(ei;x)‘z> At

= xk(ti) — (£a(0i; x) = £(0)) Vi @(0i, xi(ti)) At
= Xk(t,') + <VF(X/<(1‘,‘),9,') — <V><K(Xk()‘.‘,')1 ~,9,‘),U£>)At
= Xk(t,‘) + V(Xk(t,')7 I/g., 0,-)At

where At — learning rate, t; = iAt, 0; ~ P —iid., v/ =137 6,0,
F(x,0) = f(0)®(0,x) and K(x,y,0) = (0, x)P(0,y).
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Motivation and derivation of the SPDE _
Continuous Dynamics of Parameters

Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, ;i ~ P —i.i.d.
Xi(tiv1) = x(ti) + V(a(ti), vi, 0:)At, k€ {1,...,n},

n__ 1 n
where v = 237 0y -
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Continuous Dynamics of Parameters

Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, ;i ~ P —i.i.d.
Xi(tiv1) = x(ti) + V(a(ti), vi, 0:)At, k€ {1,...,n},

where v/ = 15775,
Considering the empirical distribution v” = 1 3°7_ 4, , one has

f2(0; x) = Z¢ (0, x) = (D(6,-),").
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Motivation and derivation of the SPDE _
Continuous Dynamics of Parameters

Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, ;i ~ P —i.i.d.
Xi(tiv1) = x(ti) + V(a(ti), vi, 0:)At, k€ {1,...,n},

where v/ = 15775,
Considering the empirical distribution v” = 1 3°7_ 4, , one has

f2(0; x) = Z¢ (0, x) = (D(6,-),").

The expression for xi(t) looks as an Euler scheme for

dXi(t) = V(Xk(t), pe)dt,

1 n
pe = ; Ix.(t), V(x,p) =EoV(x,p,0).
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Motivation and derivation of the SPDE _
Convergence to deterministic SPDE

If x,(0) ~ po —i.i.d., then

d(, ) = O ( ) +0(Var).

1
NG

where p1;: solves
dus = =V (V(-, pe)pe) dt

[Mei, Montanari, Nguyen '18]
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Convergence to deterministic SPDE

If x,(0) ~ po —i.i.d., then

A0, ) = o( ) +0 (\/E) :

1
Vn
where p1;: solves

dus = =V (V(-, pe)pe) dt

[Mei, Montanari, Nguyen '18]

= The mean behavior of the SGD dynamics can then be analysed by considering p:.
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Motivation and derivation of the SPDE _
Convergence to deterministic SPDE

If x,(0) ~ po —i.i.d., then

A0, ) = o( ) +0 (\/E) :

1
Vn
where p1;: solves

dus = =V (V(-, pe)pe) dt
[Mei, Montanari, Nguyen '18]

= The mean behavior of the SGD dynamics can then be analysed by considering p:.

Problem. After passing to the deterministic gradient flow 1, all of the information about
the inherent fluctuations of the stochastic gradient descent dynamics is lost.
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Motivation and derivation of the SPDE [
SDE Driven by Inf-Dim Noise for SGD Dynamics

Stochastic gradient descent
x(tiv1) = x(ti) + V(xi(ti), ve,, 0i) At
=xc(ti) + EgV(...) At + VAt (V(...) —EgV(...))VAL
——— SN~~~

=V (ti)vi) =Vva =G(x(t;),v7,0;)

1 t!
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Motivation and derivation of the SPDE |
SDE Driven by Inf-Dim Noise for SGD Dynamics

Stochastic gradient descent
x(tiv1) = x(ti) + V(xi(ti), ve,, 0i) At
=xc(ti) + EgV(...) At + VAt (V(...) —EgV(...))VAL
——— SN~~~

=V (x(t;),vf) =Va =G(xk(t),v8,07)

1 t!

is the Euler-Maruyama scheme for the SDE
dXi(t) = V(xk(t),undtwa/ G(Xe(t), i, O)W(d, dt), k € {1,...,n}
Je

where 1] = 137" 6x.(;), W — white noise on L,(©, P) (P is the distribution of ).
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Motivation and derivation of the SPDE |
SDE Driven by Inf-Dim Noise for SGD Dynamics

Stochastic gradient descent
Xk(t,'+1) = Xk(t[) + \/(Xk(f.‘;)7 l/g7 9,‘)At
=x(ti)+ EgV(...) At + VAL (V(...) —EgV(...))VAL
——— S~~~

=VOx().7) =Va =60u(t)vf0)

is the Euler-Maruyama scheme for the SDE

dXi(t) = V(Xk(t),pf)dtJr\/E/ G(Xi(t), uf,0)W(dO, dt), ke {1,...,n}

where 1 = 137" 6x.(;), W — white noise on L»(©, P) (P is the distribution of ).

Using Itd 's formula, we come to the Stochastic Mean-Field Equation:
dpe = =V - (V(:, pe)pue)dt + %Vz F(AQS pe)pe)dt +V/aVv / G(+, pe, O)pe W(d0, dt)
e

where A(xk, 1) = Eo G(xk, 1) @ G(xk, ).
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Motivation and derivation of the SPDE |
SDE Driven by Inf-Dim Noise for SGD Dynamics

Stochastic gradient descent
Xk(t,'+1) = Xk(t[) + \/(Xk(f.‘;)7 l/g7 9;)At
=x(ti)+ EgV(...) At + VAL (V(...) —EgV(...))VAL
——— S~~~

=V(a(t)vf) =Va  =G(x(t:).v7.6)

is the Euler-Maruyama scheme for the SDE
dX(t) = V(Xk(t), ui)dt + \/E/e G(Xk(t), ui,0)W(do,dt), ke{l,...,n}
where 1] = 137" 6x.(;), W — white noise on L,(©, P) (P is the distribution of ).
Using Itd 's formula, we come to the Stochastic Mean-Field Equation:
e = = - (V) + 5V < (A, )t +/aV - [ G, 0)ne W0, )
where A(xk, i) = Eg G(xk, pt) @ G(xk, ).

~~  The martingale problem for this equation is the same as in
[Rotskoff, Vanden-Eijnden, CPAM, '22]
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Motivation and derivation of the SPDE _
Well-Posedness of SMFE

Theorem 1 (Gess, Gvalani, K. 2022)

Let the coefficients V/, G be Lipschitz continuous and smooth enough w.r.t. special
variable. Then the SMFE

due = =V - (V(-, pe)pe) dt + %Vz D (A(, pe)pee) dt

—+vaVv - / - e, ) e W (dO, dt)
has a unique solution. Moreover, u; is a superposition solution, i.e.,
ﬂt:ltooxil(ﬁt)v t207
where X solves
dX(u,t) = V(X (u,t), ue)dt + f/ t), ue, )W (dO, dt)

X(u,0) =u, wueR’
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Quantified Mean-Field Limit |1
Higher Order Approximation of SGD

Stochastic Mean-Field Equation:
dur = =V - (V (-, pe) pe ) dt + %Vz (A, pe)pe)dt + /aV / G(-, pe, O)pue W(dO, dt)
e

where A(xk, 1) = Eg G (xk, 1) @ G(xk, ).
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Quantified Mean-Field Limit |1
Higher Order Approximation of SGD

Stochastic Mean-Field Equation:
dur = =V - (V (-, pe) pe ) dt + %Vz (A, pe)pe)dt + /aV / G(-, pe, O)pue W(dO, dt)
e

where A(xk, 1) = Eg G (xk, 1) @ G(xk, ).

Theorem 2 (Gess, Gvalani, K. 2022)

@ V., G — Lipschitz cont. and diff. w.r.t. the special variable with bdd deriv.;
1.

!

@ v — the empirical process associated to the SGD dynamics with oo =

@ 17 — a (unique) solution to the SMFE started from ug = 15 = % D i1 0% (0)
with x,(0) ~ o i.i.d.

Then all p € [1,2)

W,(Law 1", Law ") = o(n~/?)
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Quantified Mean-Field Limit |1
Higher Order Approximation of SGD

Stochastic Mean-Field Equation:
dpie = =V - (V(-, pe)pae)de + S92 - (A, jae)pae)de +v/aV / G (-, e, 0) e W(d0, dt)
e

where A(xk, 1) = Eg G (xk, 1) @ G (X, ).

Theorem 2 (Gess, Gvalani, K. 2022)

@ V, G - Lipschitz cont. and diff. w.r.t. the special variable with bdd deriv.;
@ v} — the empirical process associated to the SGD dynamics with o = ;

@ 1/ — a (unique) solution to the SMFE started from p§ = 1§ = £ 37 4,
with Xk(O) ~ o ii.d.

Then all p € [1,2)

W,(Law 1", Law ") = o(n"/?)
~ O(n™"), if quintified CLT for SGD holds.
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Stochastic Modified Equation and SGD

X(tny1) = x(tn) — VR(x(tn), 0n) At
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Stochastic Modified Equation and SGD

X(tny1) = x(tn) — VR(x(tn), 0n) At

= x(ta) — VEgR(...) At + VAL (VEGR(...) — VR(x(tn), 0,)) VAL
~—— SN~~~
R(x(tn)) =V =G(x(tn),0n)
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Stochastic Modified Equation and SGD

X(tny1) = x(tn) — VR(x(tn), 0n) At

= x(ta) — VEgR(...) At + VAL (VEGR(...) — VR(x(tn), 0,)) VAL
—_—— ~—
R(x(tn))

Ve =G(x(tn),0n)
is the Euler scheme for the SDE

dX:

—VR(X:)dt + v/ax? (X.)dwi,
where X (x) = EpG(x,0) ® G(x,0).
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Stochastic Modified Equation and SGD

x(tn) — VR(x(tn), 0n) At

=x(tn) — VEoR(...) At + VAt (VEgR(...) — VR(x(tn), 0,)) VAt
\ , N——

R(x(tn)) Vo

x(tnt1)

G(x(tn),0n)

is the Euler scheme for the SDE

dXe = —VR(X.)dt + Vax? (X.)dw,
where X (x) = EpG(x,0) ® G(x,0).

Theorem (Li, Tai, E '19, JMLR)

For f, R and Z% smooth enough with bounded derivatives one has

sup |[Ef(x;) — Ef(Xy)| = O(a).
H<T
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Stochastic Modified Equation and SGD

X(tny1) = x(tn) — VR(x(tn), 0n) At
= x(t)) — VEgR(...) At + VAt (VEGR(...) — VR(x(ts),0,)) VAt
——— ~—~
R(x(tn)) =ve =G(x(tn),0n)

is the Euler scheme for the SDE
dX; = fVR(Xt)dtf%V\VR(Xt)th +/az? (X)dws,

where X (x) = EpG(x,0) ® G(x,0).

Theorem (Li, Tai, E '19, JMLR)

For f, R and Z% smooth enough with bounded derivatives one has

sup [Ef (x,) — EF(X)| = O(a?).

t<T
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Stochastc Modifed Flows |
Distribution Dependent Stochastic Modified Flow
Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, 0; ~ P —i.i.d.
xk(tiv1) = x(t;) + V(x(ti), ve, 0:)At, ke {l,...,n},

1 n N
where v = 2370 0y 1)
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Distribution Dependent Stochastic Modified Flow

Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, 0; ~ P —i.i.d.

xk(tiv1) = x(t;) + V(x(ti), ve, 0:)At, ke {l,...,n},

where v} = % D ke O ()
Distribution Dependent Stochastic Flow:

dX(u,t) = V(X (u,t), ue)dt

+ ﬂ/{;G(X(m t), e, O)W(d#, dt),

X(u,0)=u, jue=poo0X ",

where is a cylindrical Wiener process on L»(©, P).
Vitalii K kyi (Hamburg University and Institute SMF, MFL and DSGD June 11, 2024
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Distribution Dependent Stochastic Modified Flow
Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, 0; ~ P —i.i.d.
xi(tisn) = xu(ti) + V(xu(ti), vi, 0i)At, ke {l,...,n},

where v} = % D he1 O (6)-
Distribution Dependent Stochastic Flow:

dX(u,t) = V(X(u, t), ue)dt
4 ﬁLG(X(u, ), 1e, O)W(d0, dt),
X(0) =, e = poo X!
where is a cylindrical Wiener process on L,(©, P).
Theorem 3 (Gess, Kassing, K. '24, JMLR)

Let 1o € P> and V, G be regular enough. Then for every ® € C4(P»)

sup [E®(ue,) — Ed(vy)| < Ca+ C/EW2(po, 7).
§<T
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Stochastic Modited Flows ||
Distribution Dependent Stochastic Modified Flow
Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, ;i ~ P —i.i.d.

xi(tiv1) = x(ti) + V(xu(ti), v, 00)At, ke {l,...,n},

where v{ = 2577 6, ).
Distribution Dependent Stochastic Modified Flow:

dX(u,t) = V(X(u, ), pe)dt — T VIV(X(u, 8), o) Pt = Z(DIV(X(u, £), o), pe) lt
+\/E/ G(X(u, t), e, 0) W(d0, dt),
X(0.0) =t oo X,
where is a cylindrical Wiener process on L>(©, P).

Theorem 3 (Gess, Kassing, K. '24, JMLR)

Let po € P2 and V, G be regular enough. Then for every ® € Ci(P»)

sup [E®(ug ) — E®(ve,)| < Car+ Cy/EWE (o, 15):
t<T
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Stochastic Modited Flows ||
Distribution Dependent Stochastic Modified Flow
Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, ;i ~ P —i.i.d.

xi(tiv1) = x(ti) + V(xu(ti), v, 00)At, ke {l,...,n},

where v{ = 2577 6, ).
Distribution Dependent Stochastic Modified Flow:

dX(u,t) = V(X(u, ), pe)dt — T VIV(X(u, 8), o) Pt = Z(DIV(X(u, £), o), pe) lt
+\/E/ G(X(u, t), e, 0) W(d0, dt),
X(0.0) =t oo X,
where is a cylindrical Wiener process on L>(©, P).

Theorem 3 (Gess, Kassing, K. '24, JMLR)

Let po € P2 and V, G be regular enough. Then for every ® € Ci(P»)

sup [Ed(ur,) — Ed(vy,)| < Ca? 4+ Cy/EW2 (o, 1g).
§<T
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Corollary: n-point motion for SGD
Assume that V(x,v,0) = —VR(x,0), then

xk(tiv1) = xe(ti)+V(x(t:), ve, 0:)At, ke {l,...,n},

describes n-point motion of SGD.
Consider the Distribution Dependent Stochastic Modified Flow:

dX(u, t) = V(X (u, t), pe)dt — %V\V(X(u, t), )| dt — %(DW(X(U, t), pe)|?, pue) dt
+Va / ). e, 0) W(d0, dt),
X(u,0) =u, pr=pooX; "

where is a cylindrical Wiener process on L,(©, P),
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Corollary: n-point motion for SGD
Assume that V(x,v,0) = —VR(x,0), then

Xk(t,'+1) = Xk(t,‘)7VR(Xk(tj), 9,‘)At, k € {1, ey n},

describes n-point motion of SGD.
Consider the Distribution Dependent Stochastic Modified Flow:

dX(u, t) = V(X (u, t), pe)dt — %V\V(X(u, t), )| dt — %(DW(X(U, t), pe)|?, pue) dt
+Va / ). e, 0) W(d0, dt),
X(u,0) =u, pr=pooX; "

where is a cylindrical Wiener process on L,(©, P),
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Corollary: n-point motion for SGD
Assume that V/(x,v,0) = —VR(x,0), then

Xk(t,'+1) = Xk(t,‘)7VR(Xk(t,‘), 0,—)At, k € {].7 ey n},

describes n-point motion of SGD.

Consider the Bistribution-Dependent Stochastic Modified Flow:
dX(u, t) = —~VR(X(u, t))dt — %VWR(X(U, £))|dt
+ \ﬂ/ G(X(u,t),0)W(d0, dt),
X(u,0) = u, )

where is a cylindrical Wiener process on L>(©, P),G(x,0) = VR(x) — VR(x,0).
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Corollary: n-point motion for SGD

Assume that V/(x,v,0) = —VR(x,0), then

Xk(t,'+1) = Xk(t,‘)7VR(Xk(t,‘), 0,—)At, k € {].7 ey n},

describes n-point motion of SGD.

Consider the Bistribution-Dependent Stochastic Modified Flow:
dX(u, t) = —~VR(X(u, t))dt — %VWR(X(U, £))|dt
+ ﬁ/ G(X(u, t),0)W(d0, dt),
X(u,0) = u, )
where is a cylindrical Wiener process on L>(©, P),G(x,0) = VR(x) — VR(x,0).
Corollary (Gess, Kassing, K. '24, JMLR)
Define Xi(t) := X(xx(0), t), k € [n]. Then for every f € Ci(R)

sup [EF(x1(t:), . . . xa(t))) — EF(Xa(t), . .. Xa(t:))| < Co.

t<T
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Stoch. Modified Flow vs Stoch. Modified Equation

Stochastic Modified Flow:
dX(t) = —VR(X(t))dt — ‘lva(X(t))Edt

+ f/ W(d6, dt),

where is a cylindrical Wiener process on L>(©, P), G(x,0) = VR(x) — VR(x,0).
Stochastic Modified Equation

dX: = —VR(X.)dt — %V\VR(Xt)th + Vax?(X,)dw,

where X(x) = EoG(x,0) ® G(x,0).
@ SMF discribes and SME have the same martingale problem;
@ SMF describes n-point motion of SGD, SME — doesn't;
@ SMF avoids the irregularity of VI, e.g. ¥(x) = x°.
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Flow structure of overparameterized SGD

The SGD
Xk(ti+1) = Xk(t,‘) + V(Xk(t,'), l/tni, Hi)At, k € {1, ey n},

where v{ = %22:1 Oy, (t) can be build as follows:
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Flow structure of overparameterized SGD

The SGD
Xk(ti+1) = Xk(t',‘) + V(Xk(tf)7 l/tni, Hi)At, k € {1, ey n}.,

where v{ = %22:1 Oy, (t) can be build as follows:

x(u, tiy1) = x(u, 1) + V(x(u, tj), vy, 0i) At,

x(u,0) =u, vy =1y ox(-t)

by taking v := 1g.

Vitalii K kyi (Hamburg University and Institute SMF, MFL and DSGD June 11, 2024 17/21



Interpolation of One-Step estimate

Set (t = At = a)
SW(po) :=EpW(vy,) = EpW (oo x(-, t1)) ")

and
TeW (o) := EpW(jue) = EpW(po 0 X(-, t)71).
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Interpolation of One-Step estimate

Set (t = At = a)
SV (o) :=EpW(ry) = EpW(uo o x(-, t1)) 1)

and
TeW (o) := EpW(jue) = EpW(po 0 X(-, t)71).

Then for t, = nae = nAt

E® (0 0 (-, t0) ) ~E® (0 0 X, 1) = E®(ur,) — E®(pe,) = S"®(pio) — Tr, ®(110)
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Interpolation of One-Step estimate
Set (t = At =a)
SW(po) :=EpW(vy,) = EpW (oo x(-, t1)) ")

and
TeW(uo) = EpW(ur) = EpW(po 0 X (- 1) 7).

Then for t, = na = nAt

E® (10 0 x(+, tn) ) ~E® (110 0 X, 1) = E® (1) — E®(ps,) = S"®(0) — T, P (p10)

n—1
=3 (8" T 0(0) = ST, (1))
i=0
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Interpolation of One-Step estimate

Set (t = At =a)
SW(po) = EpW(vy,) = EpW(po o x(-, 11)) ™)

and
TeW (o) := EpW(pe) = EpW(po 0 X(-, 1))

Then for t, = nae = nAt

E®(po 0 (-, tn) ) —E® (0 0 X, ') = E®(vs,) — ED(p1g,) = S"P(p10) — Te, P(120)

(8" T ®(10) = 8" T, 0(10))

I
3
|

Il
o

n—1
D ST STy (ko) = Ta T, (o)
i=0 —

=:U(tj,p0)
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Interpolation of One-Step estimate

Set (t = At =a)
SW(po) = EpW(vy,) = EpW(po o x(-, 11)) ™)

and
TeW (o) := EpW(pe) = EpW(po 0 X(-, 1))

Then for t, = nae = nAt

E®(po 0 (-, tn) ) —E® (0 0 X, ') = E®(vs,) — ED(p1g,) = S"P(p10) — Te, P(120)

(8" T ®(10) = 8" T, 0(10))

I
3
|

Il
o

-

n—

S"TTH ST (o) — T T ®(10)
———

i=0
=:U(tj,p0)
Since Supuoepz ‘S\U(,U,o)| < SupuoE'Pz ‘\U(H’O)"
n—1
sup |EP (g0 0 x(+, 2) ) — E®(po 0 X(-, tn)fl)‘ <Y sup |SU(t, po) — Ta U(ti, o).
mo€P i—o HoEP2

Vitalii K kyi (Hamburg University and Institute SMF, MFL and DSGD June 11, 2024 18/21




Expansions of SW(1o) and P, W (o)

Expansion in Taylor's series w.r.t a = At

SV (o) = V(o) + « /M DV (z, o) - V(z, o) po(dz)
+ () + PRV, o),

where sup,,;cp, [Ri| < C[[V]|c.
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Expansion in Taylor's series w.r.t a = At

SV (o) = V(o) + « /vd DV (z, o) - V(z, o) po(dz)

+a%(..) + RV, o),

where sup,,;cp, [Ri| < C[[V]|c.

Pu\u(/lo) = W(/Lo) + / »CPSW(/LO)C/S,
J0

where £ = L1 + aL> and

L1V (uo) = /Fd DW(x, uo) - V(x, wo)po(dx),  LoW(po) = ...
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Expansions of SW(1o) and P, W (o)

Expansion in Taylor's series w.r.t a = At

SV (o) = V(o) + « /vd DV (z, o) - V(z, o) po(dz)

+a%(..) + RV, o),

where sup,,;cp, [Ri| < C[[V]|c.

P(x\lj(,u,o) = W(/Lo) + / 'CPSW(NO)C!S,
J0

where £ = L1 + aL> and

L1V(po) = /]pd DV (x, po) - V(x, o) po(dx), LaW(uo) = ...

Iterating the equality above, one gets
1
PV (110) = W(po) + aliW(po) + o ([,2 + §£§> V(o) + a®Ra(V, po),

where sup,,;cp, [Ro| < C[[W]|cs.
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Comparison of Generators and End of Proof

Fort,=an<T

n—1
sup ‘ECD(HO 0 Zy') = Ed(uo o Xr:l)’ <> sup [SU(t, o) — PaU(ti, o)
HoEP =0 1o EP2
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Comparison of Generators and End of Proof

Fort,=an< T

n—1
sup ‘E¢(Mo 0Z,") = Ed(uo o thl)’ <> sup [SU(ti, po) — PaU(ti, o)
ko €P i—0 Ho€P2

n—1
<> sup o |Ri(U(t, o), o) — Re(U(ti, o), o)

i—g HoEP2
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Comparison of Generators and End of Proof

Fort,=an< T

n—1

sup ‘ECD(MO 0Z,") = E®(uo o erl)‘ <Y sup |SU(t, o) — PaU(ti, o)
HoEP i—g HoEP2
n—1
< Z sup o’ |Ru(U(ti, po), po) — Ra(U(ti, o), o)
i—g HoEP2
3 2
<« nCHUHCg'A([O,T]xPz) <GTa .
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Comparison of Generators and End of Proof

Fort,=an< T

n—1
sup ‘E¢(uo 0Z,") = E®(uo o szl)‘ <Y sup |SU(t, o) — PaU(ti, o)
HOEP i—g HoEP2
n—1
< Z sup o’ |Ru(U(ti, po), pto) — Ra(U(ti, o), o)
i—g HoEP2
3 2
<« nC||UHCg’4([O,T]><7>2) <GTa .

Proposition [Feng-Yu Wang, J. Evol. Equ., '21]

Let V € C)°(RYxP2), G(-,-,0) € CY*(RYxP2) P-a.s. Then for every & € Cp(P2)
the function U(t, o) = E® (1) is a unique solution to the equation

81’U(t1 /1’0) = ﬁfU(t, /LO),
U(O. /Lo) = q)(/lo).

Moreover, U € Cp*([0, T] x P2) and 0:U € C([0, T] x P»).
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