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Motivation: Stochastic Gradient Descent

Toy simulation: Recognizing hand-written digits

Digit Recognition
Digit Recognition
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Please select the number of neurons in 2 hidden layers:
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Digit Recognition
: @ MNIST database (used 15 000 data for
: training)
2 @ Neural network with two hidden layers
Gear @ (stochastic) gradient descent
Please selec the number of neurons in 2 hidden lyers: @ accuracy — 93% on testing data, 68% — on
i s oxio L
| hand-witing inputs

Simulation done by Bohdan Tkachuk
(student at Applied College of Yuriy Fedkovych Chernivtsi National University, Ukraine)
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Supervised Learning

Give some data {(&;,7i), i € I}, the main goal of supervision learning is to predict a new
7 given a new &.
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Supervised Learning

Give some data {(&;,7i), i € I},
7 given a new &.
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Motivation: Stochastic Gradient Descent _
Supervised Learning

Give some data {(&;,7i), i € I}, the main goal of supervision learning is to predict a new
7 given a new &.
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33333323323333333 &; — pictures (vector with coordinates coding
#4949 F5d49 4844 :

555855S8 555565555 every pixel)

CCbblobbbdt 6660 ~i — corresponding digit
T777710TIN12%777

¥ 588 8PS 8PTTITSLCCE

$99949%494949499 9

MNIST database

Assume that & ~ P i.i.d. and f(&) =i (in general: 4; may not be a deterministic
function of &)
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Neural Network

Hidden Layers

Input Layer Output Layer [~} L c N —_ number Of Iayers
(.\\//.‘
\\?0/ AN '//. @ di,...,d; — dimension of each layer

X DRI

I X R
//»“‘V""\\' ZLN
e\ AN

@ o — activation functions (o(x) = (1 4+ ™),
o(x) = max(x,0),...)
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Neural Network

Hidden Layers

Input Layer
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Output Layer @ L € N — number of layers

@ di,...,d, — dimension of each layer

@ o — activation functions (o(x) = (1 4+ ™),
o(x) = max(x,0),...)

PSR A

Motion of "signals” from layer to layer:

£ (a((WE + b)),
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Neural Network

Hidden Layers

Input Layer
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Output Layer @ L € N — number of layers

@ di,...,d, — dimension of each layer

@ o — activation functions (o(x) = (1 4+ ™),
o(x) = max(x,0),...)

PSR A

Motion of "signals” from layer to layer:
§ = (o((WE+ b)),

Output v = f(€) is approximated by f(¢; z) (in this example z = (WA, by, Ws, by, .. .))
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Neural Network

Hidden Layers

Output Layer @ L € N — number of layers

Input Layer

@ di,...,d, — dimension of each layer

@ o — activation functions (o(x) = (1 4+ ™),
o(x) = max(x,0),...)
Motion of "signals” from layer to layer:

£ (a((WE + b)),

Output v = f(€) is approximated by f(¢; z) (in this example z = (WA, by, Ws, by, .. .))
We measure the distance between f and f(+; z) by the risk function

R(z) := Epl(f(£), f (& 2))

July 3, 2024
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Stochastic Gradient Descent

Set B B
R(z,€) :=1(f(&),f(&2)), R(z) =EpR(z,£) — min

P. Mertikopoulos, N. Hallak, A. Kavis, V. Cevher '20
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Motivation: Stochastic Gradient Descent _
Stochastic Gradient Descent

Set B B
R(z,€) :=1(f(&),f(&2)), R(z) =EpR(z,£) — min

P. Mertikopoulos, N. Hallak, A. Kavis, V. Cevher '20

Stochastic Gradient Descent: taking z(0) € RY define
2(ti) = 2(ti)) — aVR(2(ti+1), &)

for learning rate «, ti = i and & ~ P —i.i.d.
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Motivation: Stochastic Gradient Descent _
Stochastic Differential Equation as Limiting Dynamics

Strategy: The systematic understanding of SGD dynamics has to rely on the
identification of universal structures that are invariant to many degrees of freedoms

(choice of loss function, architecture of network ...), while retaining the essential
properties of SGD.

Z(t,‘+1) = Z(t,') — VR(Z(t,'),g,')At
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Stochastic Differential Equation as Limiting Dynamics

Strategy: The systematic understanding of SGD dynamics has to rely on the
identification of universal structures that are invariant to many degrees of freedoms
(choice of loss function, architecture of network ...), while retaining the essential
properties of SGD.

Z(t,;l) = Z(t,‘) — VR(Z(t,’),&,‘)At

= z(t;)) — VE¢R(...) At + VAt (VE¢R(...) — VR(z(t), 1)) VAL
—_— ~—~—
R(z(t;))

va =G(2(4),&)
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Motivation: Stochastic Gradient Descent _
Stochastic Differential Equation as Limiting Dynamics

Strategy: The systematic understanding of SGD dynamics has to rely on the
identification of universal structures that are invariant to many degrees of freedoms

(choice of loss function, architecture of network ...), while retaining the essential
properties of SGD.

z(tiy1) = z(t)) — VR(z(t:), &) At
= z(t;)) = VE:R(...) At + VAt (VE¢R(...) — VR(z(t;), &) VAL
R , N——~
R(z(t;)) =V =G(z(t),¢))

is the Euler scheme (At — 0) for the SDE

dZ, = —~VR(Z:)dt + v/aX?(Z:)dw,

where X(z) = EpG(z,£) ® G(z,€).
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Motivation: Stochastic Gradient Descent _
Stochastic Differential Equation as Limiting Dynamics

Strategy: The systematic understanding of SGD dynamics has to rely on the
identification of universal structures that are invariant to many degrees of freedoms
(choice of loss function, architecture of network ...), while retaining the essential
properties of SGD.
Z(t,;l) = Z(t,') — VR(Z(t,'), &,‘)At
= z(t;)) = VE:R(...) At + VAt (VE¢R(...) — VR(z(t;), &) VAL
——— SN~~~
R(z(t;)) =vea =G(2(t;),&)

is the Euler scheme (At — 0) for the SDE

dZ, = —VR(Z.)dt + /ax?(Z:)dw,
where ¥(z) = EpG(z,£) ® G(z,€).

[Li, Tai, E, Malladi, Arora, Wang, Kassing, Gess,...]
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Our Goal

@ Learning rate goes to zero;
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@ Learning rate goes to zero;

@ Number of neurons goes to infinity;
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Our Goal

@ Learning rate goes to zero;
@ Number of neurons goes to infinity;

© Neural network has only one hidden layer;

Input Layer Hidden Layer OutputLayer

nput 1/
ezt

wpuz /O
=

by Nicola Manzini
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Our Goal

@ Learning rate goes to zero;
@ Number of neurons goes to infinity;

© Neural network has only one hidden layer;

Input Layer Hidden Layer OutputLayer

input 2
=5

Input 4
—|

i by Nicola Manzini

© Propose a continuous model that also catches the fluctuations of SGD.
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Neural network with one hidden layer

Input Layer Hidden Layer Output Layer

Network with a single hidden layer:

LI
k=1
= <¢(§7 ) Vn>7

fa(&; x)

input3 ([
—{

where x, € RY, k € {1,...,n}, are
parameters which have to be found,

nil n I
V= nZkzl()Xk

by Nicola Manzini

[ Chizat, Bach, Mei, Nguye, Rotskoff, Sirignano, Vanden-Eijnden... ]
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Motivation: Stochastic Gradient Descent _
Neural network with one hidden layer

Input Layer Hidden Layer Output Layer

Network with a single hidden layer:

LI
k=1
= <¢(§7 ) Vn)v

fa(&; x)

input3 ([
—{

where x, € RY, k € {1,...,n}, are
parameters which have to be found,

nil n I
V= ,,Zk:ﬂ)Xk

by Nicola Manzini

[ Chizat, Bach, Mei, Nguye, Rotskoff, Sirignano, Vanden-Eijnden... ]
Generalization error

£00 = 5Bl ~ &I = 5 [ 1F6) ~ Al PP(ae),

where P is the distribution of &;.
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Stochastic gradient descent

Let xx(0) ~ po —i.i.d.
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Motivation: Stochastic Gradient Descent _
Stochastic gradient descent

Let xx(0) ~ po —i.i.d.
The parameters xi, k € {1,...,n} can be learned by stochastic gradient descent

ltin) = x(8) = Vo (5166) — (gl ) e

where At — learning rate, t; = iAt, { ~ P —i.id.,
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Motivation: Stochastic Gradient Descent _
Stochastic gradient descent

Let xx(0) ~ po —i.i.d.
The parameters xi, k € {1,...,n} can be learned by stochastic gradient descent

Xk (tiv1) = xe(ti) — Vi, <%\f(fi) - fn(fi;X)F) At

= xk(ti) — (fa(&i; x) — £(&)) Vi P(&i, xic(t1)) At

where At — learning rate, t; = iAt, { ~ P —i.id.,
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Motivation: Stochastic Gradient Descent _
Stochastic gradient descent

Let Xk(O) ~ o — i.i.d.
The parameters xi, k € {1,...,n} can be learned by stochastic gradient descent
1
Xk (tiz1) = xk(ti) — Vi, (5\1’(5;) - fn(ff:X)|2> At
= xk(ti) — (fa(&i; x) — F(&)) Vi P (&, x(8:)) At

—(t) + (VFOu(0).6) — T 3 VK (o) x(0),6) ) At

where At — learning rate, t; = iAt, { ~ P —i.id.,
F(x, &) = f(§)P(&, x) and K(x,y,£) = (£, x)P(&, y).
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Stochastic gradient descent

Let Xk(O) ~ o — ii.d.
The parameters xi, k € {1,...,n} can be learned by stochastic gradient descent

Xk (tiv1) = x(ti) — Vi, (%\f(f:) - fn(fi?X)‘Z) At

= xk(ti) — (fal&ii x) — F(&1)) Vi (&, xk(ti)) At

= x(t) + (VF(xk(t,').,ii) — (VK (x(ti), ',&),%))At

where At — learning rate, t; = iAt, & ~ P —iid., v/ =237 0.0,
F(x,&) = f(§)P(& x) and K(x,y,8) = &(&, x)®(E, y).
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Motivation: Stochastic Gradient Descent _
Stochastic gradient descent

Let Xk(O) ~ o — ii.d.
The parameters xi, k € {1,...,n} can be learned by stochastic gradient descent

Xk (tiv1) = x(ti) — Vi, (%\f(f:) - ﬂ(E/;X)\2) At

= x(ti) — (fa(&is x) — F(&1)) Vi ®(&i, xk(t1)) At
(8 + (VFGa(6).) ~ (VK C(0), 1 6).00) ) e
= Xk(t,‘) + V(Xk(t,'), l/:’,,fi)At

where At — learning rate, t; = iAt, & ~ P —iid., v/ = 2377 0.0,
F(x,&) = f(§)P(& x) and K(x,y,8) = &(&, x)®(E, y).
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Continuous Dynamics of Parameters

Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, & ~ P —i.i.d.
Xk(t,'u) = Xk(t,') + \/(Xk(t,'), l/tn/., f,‘)At, k € {1, ey n},

n__ 1 n
where v = 237 0. 1)
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Motivation: Stochastic Gradient Descent _
Continuous Dynamics of Parameters

Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, & ~ P —i.i.d.
Xk(t,'u) = Xk(t,') + \/(Xk(t,'), l/tn/., f,‘)At, k € {1, ey n},

> Bo)-

where v/

Considering the empirical distribution v” = 1 3°7_ 4, , one has

(Ex) = - D (€ ) = (06, ),0").
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Continuous Dynamics of Parameters

Recall that xx(0) ~ po —i.i.d., At — learning rate, t; = iAt, & ~ P —i.i.d.
Xk(t,'u) = Xk(t,') + \/(Xk(t,'), l/tn/., f,‘)At, k € {1, ey n},

> Bo)-

where v/

Considering the empirical distribution v” = 1 3°7_ 4, , one has
1 .
fn(é‘;X): ;;¢(£7Xk): <¢(£7)V >

The expression for xi(t) looks as an Euler scheme for

dXi(t) = V(Xk(t), pue)dt,

1 n
pe =" ;Mw V(x, ) = EeV(x, 11, €).
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Convergence to deterministic SPDE

If xc(0) ~ po —i.i.d. and At = % then

d( ) = O (%)

dus = =V (V(-, pe)pe) dt

where 11+ solves

with
V(X7 M) = E¢ V(X7M7§) = VF(X) - <V)<K(X7 ')7M>
and
F(x) = Ecf(E)P(E, %),  K(x,y) = Ee[®(£, x)P(&, y)]-

[Mei, Montanari, Nguyen '18]
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Convergence to deterministic SPDE

If xc(0) ~ po —i.i.d. and At = % then

d( ) = O (})

dﬂt =-V (V(, ;l,t),ut) dt

where 11+ solves

with
V(X7 M) = E¢ V(X7M7§) = VF(X) - <V)<K(X7 ')7M>
and
F(x) = Ecf(E)P(E, %),  K(x,y) = Ee[®(£, x)P(&, y)]-

[Mei, Montanari, Nguyen '18]

— The mean behavior of the SGD dynamics can then be analysed by considering fi.
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Main Goal

Problem. After passing to the deterministic gradient flow , all of
the information about the inherent fluctuations of the stochastic
gradient descent dynamics is lost.
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Main Goal

Problem. After passing to the deterministic gradient flow , all of
the information about the inherent fluctuations of the stochastic
gradient descent dynamics is lost.

Goal: Propose an SPDE which would capture the fluctuations of the
SGD dynamics and also would give its better approximation.
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Motivation: Stochastic Gradient Descent _
Classical SDE for SGD Dynamics

Stochastic gradient descent

xi(tiy1) = xi(t) + V(x(t), vi, &) At
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Motivation: Stochastic Gradient Descent _
Classical SDE for SGD Dynamics

Stochastic gradient descent

Xk(t,'u) = Xk(ti) + V(Xk(ti)a VZ,{,‘)AL‘
= () +Ee V(.. YAt + VAL (V(...) = EcV(...))VAt
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Classical SDE for SGD Dynamics

Stochastic gradient descent

Xk(t”l) = Xk(t/') + V(Xk(tf)7l/tn,-7£f)At
=x(t;) + EeV(...) At + VAL (V(...) = EeV(...))VAL
~—_—— ~—~

=V(x(t;),v]) =va =G (x4 (1), ,€))

i
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Classical SDE for SGD Dynamics

Stochastic gradient descent
Xie(tiv1) = xi(ti) + V(xe(ti), vi, &) At
=xc(t;)) + EcV(...) At + VAL (V(...) —EcV(...)) VAL
— S~~~

=V(x(t;),v]) =va =G(x(t)),v

i

is the Euler-Maruyama scheme for the SDE
dXi(t) = V(X(t), puf)dt + Va(£2)u(X(1))dB(t), k€ {1,...,n}

where 1] = 1577 6x. (), Tu(x) = Ee G (xk, 1, £) ® G(x1, 11,€) and
B — n-dim Brownian motion.
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Classical SDE for SGD Dynamics

Stochastic gradient descent
Xie(tiv1) = xi(ti) + V(xe(ti), vi, &) At
=xc(t;)) + EcV(...) At + VAL (V(...) —EcV(...)) VAL
— S~~~

=V(x(t;),v]) =Va =G(x(ti),v],E0)

i

is the Euler-Maruyama scheme for the SDE
dXi(t) = V(X(t), puf)dt + Va(£2)u(X(1))dB(t), k€ {1,...,n}

where 1] = 1577 6x. (), Tu(x) = Ee G (xk, 1, £) ® G(x1, 11,€) and
B — n-dim Brownian motion.

~s Y3 is dn x dn matrix!
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Motivation: Stochastic Gradient Descent _
Martingale Problem for Empirical distribution

dXi(t) = V(Xe(t), ul)dt + Va(E2)(X(£))dB(t), ke {1,...,n}

where pif = 13771 xie), Tua(x) = Alxk, x1, 1) i = Ee G (x, 11, €) @ G(x1, 1, )

n
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Motivation: Stochastic Gradient Descent _
Martingale Problem for Empirical distribution

dXi(t) = V(Xe(t), 1) dt + Va(Z2)(X(1))dB(t), k€ {1,...,n}
where p1f = 377 Gx), Thi(x) = AQxk, 31, 1) = Be G (xk, 11,€) © G (1,11, )

Taking ¢ € C2(R9), we get for the empirical measure pf

n n o 't n n t n n
(@, ut) = (o, po) + 5/ <V2¢:A(--,/Ls),us>d5+/ (Vo - V(- 13), pul) ds
0 0

+ Mart.,

where A(x, 1) = A(x, x, 1)
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Martingale Problem for Empirical distribution

dXil(t) = V(Xi(t), 1)t + /a(E3 (X (1) dB(t), k€ {L,...,n}
where i = % Yo 0x(e) k(X)) = A~(X/<5X/a,u) 1= Ee G (%0, 1, €) ® G(x1, 1, §)

Taking ¢ € C2(R9), we get for the empirical measure pf

n n o 't n n t n n
(@, ut) = (o, po) + 5/ <V2’»0:A(--,/ts),us>d5+/ (Vo - V(- 13), pul) ds
0 0

+ Mart.,

where A(x, 1) = A(x, x, ;1) and

[Mart], = o / L, [ (9600 T : Ay sy ) s

[Rotskoff, Vanden-Eijnden, CPAM, 2022]
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Motivation: Stochastic Gradient Descent _
SDE Driven by Inf-Dim Noise for SGD Dynamics

Stochastic gradient descent

Xk(t1+1) = Xk(t,') + V(Xk(t/), I/Z,f,‘)At
= xi(t) + EeV(...) At + VAL (V(...) —EeV(...))VAt
—_—— ~—

=V(x(t),v) =Va =GtV &)

is the Euler-Maruyama scheme for the SDE
dXi(t) = V(Xe(t), ) dt + Va(E2)(X(£))dB(t), ke {1,...,n}

where pf = %27:1 Ix,(t)r Thi(x) = Ee G(xx, i1, &) ® G(xi1, 1, €) and
B — n-dim Brownian motion.
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Motivation: Stochastic Gradient Descent _
SDE Driven by Inf-Dim Noise for SGD Dynamics

Stochastic gradient descent
Xk(ti+1) = Xk(t,‘) + V(Xk(t,'), l/g../f,')At

=xc(ti)) + EcV(...) At + VAL (V(...) —EcV(...)) VAL
—_——— SN~~~
=V (t)v7) =va =G (i), V1 -&)

is the Euler-Maruyama scheme for the SDE
(1) = VOX(0). i)+ v [ GOX(0), i YW(dE, db), ke {1,...,m)
4
where 11f = 37" 6x,;), W — white noise on Ly(&, P) (P is the distribution of &).

[Gess, Kassing, K. '23]
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Motivation: Stochastic Gradient Descent _
Stochastic Mean-Field Equation

dXi(t) = V(Xe(t), 1) dt + ﬁ/;G(Xk(t),u?.,&)W(d&,dt), ke{l,...,n

where 11 = 137" 6x.(s), W — white noise on Ly(&, P).
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Motivation: Stochastic Gradient Descent _
Stochastic Mean-Field Equation

dXi(t) = V(Xe(t), 1) dt + ﬁ/;G(Xk(t),u?.,&)W(d&,dt), ke{l,...,n

where 11 = 137" 6x.(s), W — white noise on Ly(&, P).

Using 1td 's formula, we come to the Stochastic Mean-Field Equation:

dpe = =V - (V(-, pe)pae) dt
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Motivation: Stochastic Gradient Descent _
Stochastic Mean-Field Equation

dXi(t) = V(Xk(t), ui)dt + \ﬂ/ G(Xi(t), put, E)W(dE, dt), ke {l,...,n}
vE
where 1 = 137" 6y, W — white noise on Ly(&, P).
Using Itd 's formula, we come to the Stochastic Mean-Field Equation:
due = =V - (V(o, pe)pe)dt + %Vz S (AQ pe)pe)dt + /aVv - / G(-, pe, &) e W(dE, dt)

where A(xk, i) = E¢ G(xk, 1) @ G(xk, ).
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Motivation: Stochastic Gradient Descent _
Stochastic Mean-Field Equation

dXi(t) = V(Xe(t), i0)dt + \ﬂ/;G(Xk(t),u?,i)W(df,dt), kefl,... n}

where 1 = 137" 6y, W — white noise on Ly(&, P).

Using Itd 's formula, we come to the Stochastic Mean-Field Equation:
due = =V - (V(o, pe)pe)dt + %Vz S (AQ pe)pe)dt + /aVv - /G(-,,ut,{),ut W(d¢, dt)
where A(xk, 1) = E¢ G(xk, 1) @ G(xk, ).

~>  The martingale problem for this equation is the same as in
[Rotskoff, Vanden-Eijnden, CPAM, '22]
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Motivation: Stochastic Gradient Descent _
Related Works

die = =9 - (Vs pue)pe) de + 592 (A, o)) de — V/av - /5 G- e, €)pue W(dE, ),

Well-posedness results for similar SPDEs:

@ Continuity equation in the fluid dynamics and optimal transportation
[Ambrosio, Trevisan, Crippa...]|. There A= G = 0.

Vitalii K kyi (Hamburg University) Conservative SPDEs and SGD July 3, 2024 18/32




Motivation: Stochastic Gradient Descent _
Related Works

die = =9 - (Vs pue)pe) de + 592 (A, o)) de — V/av - /§ G- e, €)pue W(dE, ),

Well-posedness results for similar SPDEs:
@ Continuity equation in the fluid dynamics and optimal transportation
[Ambrosio, Trevisan, Crippa...]|. There A= G = 0.

@ Stochastic nonlinear Fokker-Planck equation [Coghi, Gess '19]. The covariance
A has more general structure (i.e. A—EG ® G > 0) but the noise is
finite-dimensional.
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Motivation: Stochastic Gradient Descent _
Related Works

die = =9 - (Vs pue)pe) de + 592 (A, o)) de — V/av - /5 G- e, €)pue W(dE, ),

Well-posedness results for similar SPDEs:

@ Continuity equation in the fluid dynamics and optimal transportation
[Ambrosio, Trevisan, Crippa...]|. There A= G = 0.

@ Stochastic nonlinear Fokker-Planck equation [Coghi, Gess '19]. The covariance
A has more general structure (i.e. A—EG ® G > 0) but the noise is
finite-dimensional.

@ Particle representations for a class of nonlinear SPDEs [Kurtz, Xiong '99]. The
equation has more general form but the initial condition g must have an Ly-density
w.r.t. the Lebesgue measure.
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Motivation: Stochastic Gradient Descent _
Related Works

die = =9 - (Vs pue)pe) de + 592 (A, o)) de — V/av - /5 G- e, €)pue W(dE, ),

Well-posedness results for similar SPDEs:
@ Continuity equation in the fluid dynamics and optimal transportation
[Ambrosio, Trevisan, Crippa...]|. There A= G = 0.

@ Stochastic nonlinear Fokker-Planck equation [Coghi, Gess '19]. The covariance
A has more general structure (i.e. A—EG ® G > 0) but the noise is
finite-dimensional.

@ Particle representations for a class of nonlinear SPDEs [Kurtz, Xiong '99]. The
equation has more general form but the initial condition g must have an Ly-density
w.r.t. the Lebesgue measure.

The results from [Kurtz, Xiong] can be applied to our equation if uo has Lo-density!
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Wasserstein distance

Let (E, d) be a Polish space, and for p > 1 P,(E) be a space of all probability measures
p on E with

/E d? (x, 0)p(dx) < oo.
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Wasserstein distance

Let (E, d) be a Polish space, and for p > 1 P,(E) be a space of all probability measures
p on E with

/E d?(x, 0)p(dx) < 0.

For p1,p> € Pp(E) we define the Wasserstein distance by

Wh(p1, p2) = inf {/EZ d?(x, y)x(dx, dy) : iEEXng z i)); }

L

N~ ﬁ <

Wikipedia
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Wasserstein distance

Let (E, d) be a Polish space, and for p > 1 P,(E) be a space of all probability measures
p on E with

/ d”(x, 0)p(dx) < co.
E
For p1, p2 € Pp(E) we define the Wasserstein distance by

(Ex )=
:inf{JEd"(cl,@): Cwﬂ«-} y IO

Wﬁ(pl,pz):inf{/Ez d"(x,y)x(dx,dy) : XX E)=p }

N~ =

R R e

Wikipedia
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Wasserstein distance

Let (E, d) be a Polish space, and for p > 1 P,(E) be a space of all probability measures
p on E with

/Edp(x, 0)p(dx) < oco.

For p1, p2 € Pp(E) we define the Wasserstein distance by

WS (p1, p2) = inf {/EZ d?(x, y)x(dx, dy) : ;EEXng z Z;v }

:inf{IEdp(Q,@): C,-Np,-} , O

Proposition

(Po(E), W,) is a Polish space.

'
A

R R e

Wikipedia
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e
Higher Order Approximation of SGD
Stochastic Mean-Field Equation:
dpte =~V - (V( pe)p)dt + 207 < (A pae) ot + /¥ - /E G-, e, €)pae W(dE, )

where A(xk, i) = E¢ G(xk, 1) @ G(xk, ).
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e
Higher Order Approximation of SGD
Stochastic Mean-Field Equation:
dpte =~V - (V( pe)p)dt + 207 < (A pae) ot + /¥ - /E G-, e, €)pae W(dE, )
where A(xi, 1) = Ee G(xi, it) @ G(xx, 11).

Theorem 1 (Gess, Gvalani, K. 2022)

@ V., G — Lipschitz cont. and diff. w.r.t. the special variable with bdd deriv.;
@ v/ — the empirical process associated to the SGD dynamics with a0 = %;

@ 1f — a (unique) solution to the SMFE started from

with xi(0) ~ po i.i.d.

Then all p € [1,2)
W,(Law p”, Law ") = o(n~*/?).
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Quantified Central Limit Theorem for SMFE

Theorem 2 (Gess, Gvalani, K. 2022)

Under the assumptions of the previous theorem, 1)/ := /n (uf — p1f) — n:
where 7; is a Gaussian process solving

dne ==V - (V(wu?)nr +(VK(x, -)7'flr>u?(d><)> dt -V - /5 G (-, e, E)ue W(d§, dt).

<
=

Moreover, E sup |[nf — n:||>, <
te[0,T]
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Quantified Central Limit Theorem for SMFE

Theorem 2 (Gess, Gvalani, K. 2022)

Under the assumptions of the previous theorem, 1)/ := /n (uf — p1f) — n:
where 7; is a Gaussian process solving

dne = -V - (V(-,u?)w <VK(X~,-)Jh>ﬂ?(dX)> dt — V- /5 G (-, e, E)ue W(d§, dt).

Moreover, E sup H’/t — e, £

c
— n N
te[0, T

Remark. [Sirignano, Spiliopoulos, '20]

For 7 = v/A(v} — )

E sup [|fif]2, < C and " — n.
te[0,T]
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Quantified Mean-Field Limit |1
CLT for SMFE + CLT for SGD == Higher Order Approx.

Note that

pl =l +n 2+ 0.
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Quantified Mean-Field Limit |1
CLT for SMFE + CLT for SGD == Higher Order Approx.

Note that

pl = pd +n Py 0.

vl =pi +n P+ o(n?).

Vitalii K kyi (Hamburg Uni ity) Conservative SPDEs and SGD July 3, 2024




Quantified Mean-Field Limit |1
CLT for SMFE + CLT for SGD == Higher Order Approx.

Note that

pl =l + 024 0(nh).
vl =10+ n Y2+ o(n” ).

Therefore, 1" — 1" = o(nY/?).
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Quantified Mean-Field Limit |1
CLT for SMFE + CLT for SGD == Higher Order Approx.

Note that
pi=pl+ 02+ 0(nh.

vl =10+ n Y2+ o(n” ).

Therefore, 1" — 1" = o(nY/?).

VnPWE (Law(p"), Law(v")) = VP inf E [ sup |[ue — thpj}

te[0,T]

= infE | sup \/ﬁ(u?u?)\/ﬁ(v?u?)%}

te[0,T]

=W} (Law(n"), Law(7}")) — 0.
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Well-posedness and superposition principle _
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Well-posedness and superposition principle _
Continuity Equation

dus = =V - (Vue)dt
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Well-posedness and superposition principle _
Continuity Equation

dus = =V - (Vue)dt

= e = po o X(-, t),

where
dX(u,t) = V(X(u,t))dt, X(u,0)=u.

[Ambrosio, Trevisan, Lions,. . .]
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Well-posedness and superposition principle _
Continuity Equation

dus = =V - (Vue)dt

= pe = po o X(-, 1),
where
dX(u,t) = V(X(u, t))dt, X(u,0)=u.

[Ambrosio, Trevisan, Lions,. . .]

The Stochastic Mean-Field Equation was derived from:

dXi(t) = V(X(t), u)dt + v/ /{ G(Xe(t), ul, ) W(dE, ),

n 15
Xi(0) = x(0), e = ;5&@»
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Well-posedness and superposition principle _
Well-Posedness of SMFE

Theorem 3 (Gess, Gvalani, K. 2022)

Let the coefficients V/, G be Lipschitz continuous and smooth enough w.r.t. special
variable. Then the SMFE

due = =V - (V(-, pe)pe) dt + gvz S (A, pe)pe) dt
—VaVv - / - fe, §) e W(dE, dt)
has a unique solution. Moreover, u; is a superposition solution, i.e.,
pwe=poo X (-, t), t>0,
where X solves
dX(u,t) = V(X(u, t), ue)dt + \f/ ), e, ) W(dE, dt)

X(u,0)=u, ueR’
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Well-posedness and superposition principlc [
SDE with Interaction
SDE with interaction:

dX(u,t) = V(X(u,t), e dt+f/ ), pe, )W (dE, dit),

X(u,0)=u, pe=pooX '(-,t), ueR’
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Well-posedness and superposition principlc [
SDE with Interaction
SDE with interaction:

dX(u,t) = V(X(u,t), pe dt+f/ ), e, ) W(dE, dt),

X(u,0) =u, pe=pooX '(-,t), wueR

X: = X(+, t) is a solution to the conditional McKean—Vlasov SDE

dX: = V(Xe, Lxw) + ﬁ/ G(Xe, Lxyjw, E)W(dE, dt),  Lx, = pio
3
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Well-posedness and superposition principlc [
SDE with Interaction
SDE with interaction:

dX(u,t) = V(X(u, t), ue)dt + f/ ), ke, )W (dE, dt),

X(u,0) =u, pe=pooX '(-t), wueR"

X: = X(+, t) is a solution to the conditional McKean—Vlasov SDE

dX: = V(Xe, Lxw) + ﬁ/ G(Xe, Lxyjw, E)W(dE, dt),  Lx, = pio
13

Theorem (Kotelenez '95, Dorogovtsev’ 07, Wang '21)
Let V, G be Lipschitz continuous, i.e. 9L > 0 such that a.s.
V) = V(s )+ 160 s ) = Gy, v )lllp < L(Ix = y| 4+ Wa(p, v)) -

Then for every 119 € P»(R?) the SDE with interaction has a unique solution started
from 0.
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Well-posedness and superposition principle _
SMFE and SDE with Interaction

Lemma

Let X be a solution to the SDE with interaction with 1 € Pz(Rd).
Then p: = po o X7 *(-, ), t > 0, is a solution to the SMFE.
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Well-posedness and superposition principle _
SMFE and SDE with Interaction

Lemma

Let X be a solution to the SDE with interaction with 1 € Pz(Rd).
Then p: = po o X7 *(-, ), t > 0, is a solution to the SMFE.

Remark: We say that i, t > 0, is a superposition solution to the Stochastic Mean-Field
equation.
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Well-posedness and superposition principle _
SMFE and SDE with Interaction

Lemma

Let X be a solution to the SDE with interaction with 1 € Pz(Rd).
Then p: = po o X7 *(-, ), t > 0, is a solution to the SMFE.

Remark: We say that i, t > 0, is a superposition solution to the Stochastic Mean-Field
equation.

Corollary
Let V, G be Lipschitz continuous. Then the SMFE
dus = =V - (V (-, pe) pe) dt + %VZ (A, pe)pe) dt

—Jav- /5 G-, e, ) W(dE, dt)

has a unique solution iff it has only superposition solutions.
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Well-posedness and superposition principle _
Uniqueness of Solutions to SMFE

@ To prove the uniqueness, we show that every solution to the (nonlinear) SMFE is a
superposition solution.
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Well-posedness and superposition principle _
Uniqueness of Solutions to SMFE

@ To prove the uniqueness, we show that every solution to the (nonlinear) SMFE is a
superposition solution.

@ We first freeze the solution p¢ in the coefficients, considering the linear SPDE:
dve = =V - (v(t, )ve) dt + 9v2 (a(t, Yve) dt
—Vav - / v W(dE, dt),

where a(t, x) = A(x, ue), v(t,x) = V(x, pt) and g(t, x,&) = G(x, e, €).

Vitalii K kyi (Hamburg University) Conservative SPDEs and SGD July 3, 2024




Well-posedness and superposition principle _
Uniqueness of Solutions to SMFE

@ To prove the uniqueness, we show that every solution to the (nonlinear) SMFE is a
superposition solution.

@ We first freeze the solution p¢ in the coefficients, considering the linear SPDE:
dve = =V - (v(t, )ve) dt + 9v2 (a(t, Yve) dt
—Vav - / v W(dE, dt),

where a(t, x) = A(x, ue), v(t,x) = V(x, pt) and g(t, x,&) = G(x, e, €).

@ We remove the second order term and the noise term from the linear SPDE by a
(random) transformation of the space.
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Well-posedness and superposition principle _
Random Transformation of State Space

We introduce the field of martingales

M(x,t) = ﬁ/tg(s,x,g)vv(dg, ds), xeR?, t>0.
0

and consider a solution ¥:(x) = (¢t (x),...,¥¢(x)) to the stochastic transport equation
t
Ve (x)= XK — Vil (x) - M(x, ods).
Jo
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Well-posedness and superposition principle _
Random Transformation of State Space

We introduce the field of martingales
ot
M(x, t) = ﬂ/ g(s,x, )W(d¢, ds), xeRY t>0.
0
(x)) to the stochastic transport equation

U: )= x —/ Vbs (x, ods).

Lemma (see Kunita Stochastic flows and SDEs)

Under some smooth assumption on the coefficient g, the exists a field of dif-
feomorphisms (t,-) : R — R? t > 0, which solves the stochastic transport
equation.
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Well-posedness and superposition principle _
Transformed SPDE

For the solution v, t > 0, to the linear SPDE
dve = =V - (v(t,)v:) dt + %Vz (a(t, )ve) dt — /aV - /g(t, L v W(dE, dt),
JE

we define

—1
pe=vio; .
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Well-posedness and superposition principle _
Transformed SPDE

For the solution v, t > 0, to the linear SPDE
dve = =V - (v(t,)v:) dt + %Vz (a(t, )ve) dt — /aV - /g(t, L v W(dE, dt),
JE

we define
-1
Pt =VtoyP: .

Proposition

Let the coefficient g be smooth enough. Then p;, t > 0, is a solution to the
continuity equation?

dpe = =V (b(t,)pe)dt, po=vo = po,

for some b depending on v and derivatives of a and .

2 Ambrosio, Lions, Trevisan,. ..

Vitalii K kyi (Hamburg University) Conservative SPDEs and SGD July 3, 2024




Reference

@ Gess, Gvalani, Konarovskyi,
Conservative SPDEs as fluctuating mean field limits of stochastic gradient descent
(arXiv:2207.05705)

@ Gess, Kassing, Konarovskyi,
Stochastic Modified Flows, Mean-Field Limits and Dynamics of Stochastic Gradient
Descent
Journal of Machine Learning Research 25 (2024) 1-27

Thank you!
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