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Motivation: Stochastic Gradient Descent

Toy simulation: Recognizing hand-written digits

MNIST database (used 15 000 data for
training)

Neural network with two hidden layers

(stochastic) gradient descent

accuracy – 93% on testing data, 68% – on
hand-writing inputs

Simulation done by Bohdan Tkachuk
(student at Applied College of Yuriy Fedkovych Chernivtsi National University, Ukraine)
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Motivation: Stochastic Gradient Descent

Supervised Learning

Give some data {(ξi , γi ), i ∈ I}, the main goal of supervision learning is to predict a new
γ given a new ξ.

MNIST database

ξi – pictures (vector with coordinates coding
every pixel)
γi – corresponding digit

Assume that ξi ∼ P i.i.d. and f (ξi ) = γi (in general: γi may not be a deterministic
function of ξ)
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Motivation: Stochastic Gradient Descent

Neural Network

L ∈ N – number of layers

d1, . . . , dL – dimension of each layer

σ – activation functions (σ(x) = (1 + e−x),
σ(x) = max(x , 0),...)

Motion of ”signals” from layer to layer:

ξ 7→ (σ((W ξ + b)i )),

Output γ = f (ξ) is approximated by f (ξ; z) (in this example z = (W1, b1,W2, b2, . . .))
We measure the distance between f and f (·; z) by the risk function

R(z) := EP l(f (ξ), f (ξ; z))
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Motivation: Stochastic Gradient Descent

Stochastic Gradient Descent

Set
R̃(z , ξ) := l(f (ξ), f (ξ; z)), R(z) = EP R̃(z , ξ) → min

P. Mertikopoulos, N. Hallak, A. Kavis, V. Cevher ’20

Stochastic Gradient Descent: taking z(0) ∈ Rd define

z(ti+1) = z(ti )− α∇R̃(z(ti+1), ξi )

for learning rate α, ti = αi and ξi ∼ P – i.i.d.
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Motivation: Stochastic Gradient Descent

Stochastic Differential Equation as Limiting Dynamics

Strategy: The systematic understanding of SGD dynamics has to rely on the
identification of universal structures that are invariant to many degrees of freedoms
(choice of loss function, architecture of network ...), while retaining the essential
properties of SGD.

z(ti+1) = z(ti )−∇R(z(ti ), ξi )∆t

is the Euler scheme (∆t → 0) for the SDE

dZt = −∇R(Zt)dt +
√
αΣ

1
2 (Zt)dwt ,

where Σ(z) = EPG(z , ξ)⊗ G(z , ξ).

[Li, Tai, E, Malladi, Arora, Wang, Kassing, Gess,...]
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Motivation: Stochastic Gradient Descent

Our Goal

1 Learning rate goes to zero;

2 Number of neurons goes to infinity;

3 Neural network has only one hidden layer;

by Nicola Manzini

4 Propose a continuous model that also catches the fluctuations of SGD.
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Motivation: Stochastic Gradient Descent

Neural network with one hidden layer

by Nicola Manzini

Network with a single hidden layer:

fn(ξ; x) =
1

n

n∑
k=1

Φ(ξ, xk)

= ⟨Φ(ξ, ·), νn⟩,

where xk ∈ Rd , k ∈ {1, . . . , n}, are
parameters which have to be found,
νn = 1

n

∑n
k=1 δxk

[ Chizat, Bach, Mei, Nguye, Rotskoff, Sirignano, Vanden-Eijnden... ]

Generalization error

L(x) := 1

2
EP |f (ξ)− fn(ξ; x)|2 =

1

2

∫
ξ

|f (ξ)− fn(ξ; x)|2P(dξ),

where P is the distribution of ξi .
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Motivation: Stochastic Gradient Descent

Stochastic gradient descent

Let xk(0) ∼ µ0 – i.i.d.

The parameters xk , k ∈ {1, . . . , n} can be learned by stochastic gradient descent

xk(ti+1) = xk(ti )−∇xk

(
1

2
|f (ξi )− fn(ξi ; x)|2

)
∆t

where ∆t – learning rate, ti = i∆t, ξi ∼ P – i.i.d.,
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1
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Motivation: Stochastic Gradient Descent

Continuous Dynamics of Parameters

Recall that xk(0) ∼ µ0 – i.i.d., ∆t – learning rate, ti = i∆t, ξi ∼ P – i.i.d.

xk(ti+1) = xk(ti ) + V (xk(ti ), ν
n
ti , ξi )∆t, k ∈ {1, . . . , n},

where νnt = 1
n

∑n
k=1 δxk (t).

Considering the empirical distribution νn = 1
n

∑n
k=1 δxk , one has

fn(ξ; x) =
1

n

n∑
k=1

Φ(ξ, xk) = ⟨Φ(ξ, ·), νn⟩.

The expression for xk(t) looks as an Euler scheme for

dXk(t) = V (Xk(t), µt)dt,

µt =
1

n

n∑
k=1

δXk (t), V (x , µ) = EξV (x , µ, ξ).
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Motivation: Stochastic Gradient Descent

Convergence to deterministic SPDE

If xk(0) ∼ µ0 – i.i.d. and ∆t = 1
n
, then

d(νnt , µt) = O

(
1√
n

)
,

where µt solves
dµt = −∇ (V (·, µt)µt) dt

with
V (x , µ) = EξV (x , µ, ξ) = ∇F (x)− ⟨∇xK(x , ·), µ⟩

and
F (x) = Eξf (ξ)Φ(ξ, x), K(x , y) = Eξ[Φ(ξ, x)Φ(ξ, y)].

[Mei, Montanari, Nguyen ’18]

=⇒ The mean behavior of the SGD dynamics can then be analysed by considering µt .
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Motivation: Stochastic Gradient Descent

Main Goal

Problem. After passing to the deterministic gradient flow µ, all of
the information about the inherent fluctuations of the stochastic
gradient descent dynamics is lost.

Goal: Propose an SPDE which would capture the fluctuations of the
SGD dynamics and also would give its better approximation.
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Motivation: Stochastic Gradient Descent

Classical SDE for SGD Dynamics

Stochastic gradient descent

xk(ti+1) = xk(ti ) + V (xk(ti ), ν
n
ti , ξi )∆t

is the Euler-Maruyama scheme for the SDE

dXk(t) = V (Xk(t), µ
n
t )dt +

√
α(Σ

1
2 )k(X (t))dB(t), k ∈ {1, . . . , n}

where µn
t = 1

n

∑n
i=1 δXi (t), Σk,l(x) = EξG(xk , µ, ξ)⊗ G(xl , µ, ξ) and

B – n-dim Brownian motion.

⇝ Σ
1
2 is dn × dn matrix!
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Motivation: Stochastic Gradient Descent

Martingale Problem for Empirical distribution

dXk(t) = V (Xk(t), µ
n
t )dt +

√
α(Σ

1
2 )k(X (t))dB(t), k ∈ {1, . . . , n}

where µn
t = 1

n

∑n
i=1 δXi (t), Σk,l(x) = Ã(xk , xl , µ) := EξG(xk , µ, ξ)⊗ G(xl , µ, ξ)

Taking φ ∈ C2
c (Rd), we get for the empirical measure µn

t

⟨φ, µn
t ⟩ = ⟨φ, µn

0⟩+
α

2

∫ t

0

〈
∇2φ : A(·, µn

s ), µ
n
s

〉
ds +

∫ t

0

⟨∇φ · V (·, µn
s ), µ

n
s ⟩ ds

+Mart.,

where A(x , µ) = Ã(x , x , µ) and

[Mart.]t = α

∫ t

0

∫
Rd

∫
Rd

(∇φ(x)⊗∇φ(y)) : Ã(x , y , µn
s )µ

n
s (dx)µ

n
s (dy)ds

[Rotskoff, Vanden-Eijnden, CPAM, 2022]

Vitalii Konarovskyi (Hamburg University) Conservative SPDEs and SGD July 3, 2024 15 / 32



Motivation: Stochastic Gradient Descent

Martingale Problem for Empirical distribution

dXk(t) = V (Xk(t), µ
n
t )dt +

√
α(Σ

1
2 )k(X (t))dB(t), k ∈ {1, . . . , n}

where µn
t = 1

n

∑n
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Motivation: Stochastic Gradient Descent

SDE Driven by Inf-Dim Noise for SGD Dynamics

Stochastic gradient descent

xk(ti+1) = xk(ti ) + V (xk(ti ), ν
n
ti , ξi )∆t

= xk(ti ) + EξV (. . . )︸ ︷︷ ︸
=V (xk (ti ),ν

n
ti
)

∆t +
√
∆t︸ ︷︷ ︸

=
√
α

(V (. . . )− EξV (. . . ))︸ ︷︷ ︸
=G(xk (ti ),ν

n
ti
,ξi )

√
∆t

is the Euler-Maruyama scheme for the SDE

dXk(t) = V (Xk(t), µ
n
t )dt +

√
α(Σ

1
2 )k(X (t))dB(t), k ∈ {1, . . . , n}

where µn
t = 1

n

∑n
i=1 δXi (t), Σk,l(x) = EξG(xk , µ, ξ)⊗ G(xl , µ, ξ) and

B – n-dim Brownian motion.

Vitalii Konarovskyi (Hamburg University) Conservative SPDEs and SGD July 3, 2024 16 / 32



Motivation: Stochastic Gradient Descent

SDE Driven by Inf-Dim Noise for SGD Dynamics

Stochastic gradient descent

xk(ti+1) = xk(ti ) + V (xk(ti ), ν
n
ti , ξi )∆t

= xk(ti ) + EξV (. . . )︸ ︷︷ ︸
=V (xk (ti ),ν

n
ti
)

∆t +
√
∆t︸ ︷︷ ︸

=
√
α

(V (. . . )− EξV (. . . ))︸ ︷︷ ︸
=G(xk (ti ),ν

n
ti
,ξi )

√
∆t

is the Euler-Maruyama scheme for the SDE

dXk(t) = V (Xk(t), µ
n
t )dt +

√
α

∫
ξ

G(Xk(t), µ
n
t , ξ)W (dξ, dt), k ∈ {1, . . . , n}

where µn
t = 1

n

∑n
i=1 δXi (t), W – white noise on L2(ξ,P) (P is the distribution of ξ).

[Gess, Kassing, K. ’23]
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Motivation: Stochastic Gradient Descent

Stochastic Mean-Field Equation

dXk(t) = V (Xk(t), µ
n
t )dt +

√
α

∫
ξ

G(Xk(t), µ
n
t , ξ)W (dξ, dt), k ∈ {1, . . . , n}

where µn
t = 1

n

∑n
i=1 δXi (t), W – white noise on L2(ξ,P).

Using Itô ’s formula, we come to the Stochastic Mean-Field Equation:

dµt = −∇ · (V (·, µt)µt)dt

⇝ The martingale problem for this equation is the same as in
[Rotskoff, Vanden-Eijnden, CPAM, ’22]
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Motivation: Stochastic Gradient Descent

Related Works

dµt = −∇ · (V (·, µt)µt) dt +
α

2
∇2 : (A(·, µt)µt) dt −

√
α∇ ·

∫
ξ
G(·, µt , ξ)µtW (dξ, dt),

Well-posedness results for similar SPDEs:

Continuity equation in the fluid dynamics and optimal transportation
[Ambrosio, Trevisan, Crippa. . . ]. There A = G = 0.

Stochastic nonlinear Fokker-Planck equation [Coghi, Gess ’19]. The covariance
A has more general structure (i.e. A− EG ⊗ G ≥ 0) but the noise is
finite-dimensional.

Particle representations for a class of nonlinear SPDEs [Kurtz, Xiong ’99]. The
equation has more general form but the initial condition µ0 must have an L2-density
w.r.t. the Lebesgue measure.

The results from [Kurtz, Xiong] can be applied to our equation if µ0 has L2-density!
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Quantified Mean-Field Limit
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Quantified Mean-Field Limit

Wasserstein distance

Let (E , d) be a Polish space, and for p ≥ 1 Pp(E) be a space of all probability measures
ρ on E with ∫

E

dp(x , o)ρ(dx) <∞.

For ρ1, ρ2 ∈ Pp(E) we define the Wasserstein distance by

Wp
p (ρ1, ρ2) = inf

{∫
E2

dp(x , y)χ(dx , dy) :
χ(· × E) = ρ1,
χ(E × ·) = ρ2

}

Wikipedia
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Wikipedia
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Quantified Mean-Field Limit

Higher Order Approximation of SGD

Stochastic Mean-Field Equation:

dµt = −∇ · (V (·, µt)µt)dt +
α

2
∇2 : (A(·, µt)µt)dt +

√
α∇ ·

∫
ξ

G(·, µt , ξ)µt W (dξ, dt)

where A(xk , µ) = EξG(xk , µ)⊗ G(xk , µ).

Theorem 1 (Gess, Gvalani, K. 2022)

V ,G – Lipschitz cont. and diff. w.r.t. the special variable with bdd deriv.;

νnt – the empirical process associated to the SGD dynamics with α = 1
n
;

µn
t – a (unique) solution to the SMFE started from

µn
0 = νn0 =

1

n

n∑
k=1

δxk (0)

with xk(0) ∼ µ0 i.i.d.

Then all p ∈ [1, 2)

Wp(Law µ
n, Law νn) = o(n−1/2).

Vitalii Konarovskyi (Hamburg University) Conservative SPDEs and SGD July 3, 2024 21 / 32



Quantified Mean-Field Limit

Higher Order Approximation of SGD

Stochastic Mean-Field Equation:

dµt = −∇ · (V (·, µt)µt)dt +
α

2
∇2 : (A(·, µt)µt)dt +

√
α∇ ·

∫
ξ

G(·, µt , ξ)µt W (dξ, dt)

where A(xk , µ) = EξG(xk , µ)⊗ G(xk , µ).

Theorem 1 (Gess, Gvalani, K. 2022)

V ,G – Lipschitz cont. and diff. w.r.t. the special variable with bdd deriv.;

νnt – the empirical process associated to the SGD dynamics with α = 1
n
;

µn
t – a (unique) solution to the SMFE started from

µn
0 = νn0 =

1

n

n∑
k=1

δxk (0)

with xk(0) ∼ µ0 i.i.d.

Then all p ∈ [1, 2)

Wp(Law µ
n, Law νn) = o(n−1/2).

Vitalii Konarovskyi (Hamburg University) Conservative SPDEs and SGD July 3, 2024 21 / 32



Quantified Mean-Field Limit

Quantified Central Limit Theorem for SMFE

Theorem 2 (Gess, Gvalani, K. 2022)

Under the assumptions of the previous theorem, ηnt :=
√
n
(
µn
t − µ0

t

)
→ ηt

where ηt is a Gaussian process solving

dηt = −∇ ·
(
V (·, µ0

t )ηt + ⟨∇K(x , ·), ηt⟩µ0
t (dx)

)
dt −∇ ·

∫
ξ

G(·, µ0
t , ξ)µ

0
tW (dξ, dt).

Moreover, E sup
t∈[0,T ]

∥ηnt − ηt∥2−J ≤ C
n
.

Remark. [Sirignano, Spiliopoulos, ’20]

For η̃nt :=
√
n(νnt − µ0

t )

E sup
t∈[0,T ]

∥η̃nt ∥2−J ≤ C and η̃n → η.
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Quantified Mean-Field Limit

Quantified Central Limit Theorem for SMFE

Theorem 2 (Gess, Gvalani, K. 2022)

Under the assumptions of the previous theorem, ηnt :=
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n
(
µn
t − µ0

t

)
→ ηt

where ηt is a Gaussian process solving

dηt = −∇ ·
(
V (·, µ0

t )ηt + ⟨∇K(x , ·), ηt⟩µ0
t (dx)

)
dt −∇ ·
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ξ
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Quantified Mean-Field Limit

CLT for SMFE + CLT for SGD =⇒ Higher Order Approx.

Note that

µn
t = µ0

t + n−1/2η + O(n−1).

Therefore, µn − νn = o(n−1/2).

√
npWp

p (Law(µ
n), Law(νn)) =

√
np inf E

[
sup

t∈[0,T ]

∥µn
t − νnt ∥p−J

]

= inf E

[
sup

t∈[0,T ]

∥
√
n(µn

t − µ0
t )−

√
n(νnt − µ0

t )∥p−J

]
= Wp

p (Law(η
n), Law(η̃n)) → 0.
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Well-posedness and superposition principle
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Well-posedness and superposition principle

Continuity Equation

dµt = −∇ · (Vµt)dt

=⇒ µt = µ0 ◦ X (·, t),
where

dX (u, t) = V (X (u, t))dt, X (u, 0) = u.

[Ambrosio, Trevisan, Lions,. . . ]

The Stochastic Mean-Field Equation was derived from:

dXk(t) = V (Xk(t), µ
n
t )dt +

√
α

∫
ξ

G(Xk(t), µ
n
t , ξ)W (dξ, dt),

Xk(0) = xk(0), µn
t =

1

n

n∑
i=1

δXi (t).
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Well-posedness and superposition principle

Well-Posedness of SMFE

Theorem 3 (Gess, Gvalani, K. 2022)

Let the coefficients V ,G be Lipschitz continuous and smooth enough w.r.t. special
variable. Then the SMFE

dµt = −∇ · (V (·, µt)µt) dt +
α

2
∇2 : (A(·, µt)µt) dt

−
√
α∇ ·

∫
ξ

G(·, µt , ξ)µtW (dξ, dt)

has a unique solution. Moreover, µt is a superposition solution, i.e.,

µt = µ0 ◦ X−1(·, t), t ≥ 0,

where X solves

dX (u, t) = V (X (u, t), µt)dt +
√
α

∫
ξ

G(X (u, t), µt , ξ)W (dξ, dt)

X (u, 0) = u, u ∈ Rd .
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Well-posedness and superposition principle

SDE with Interaction

SDE with interaction:

dX (u, t) = V (X (u, t), µt)dt +
√
α

∫
ξ

G(X (u, t), µt , ξ)W (dξ, dt),

X (u, 0) = u, µt = µ0 ◦ X−1(·, t), u ∈ Rd .

Xt = X (·, t) is a solution to the conditional McKean–Vlasov SDE

dXt = V (Xt ,LXt |W ) +
√
α

∫
ξ

G(Xt ,LXt |W , ξ)W (dξ, dt), LX0 = µ0

Theorem (Kotelenez ’95, Dorogovtsev’ 07, Wang ’21)

Let V ,G be Lipschitz continuous, i.e. ∃L > 0 such that a.s.

|V (x , µ)− V (y , ν)|+ ∥|G(x , µ, ·)− G(y , ν, ·)|∥P ≤ L (|x − y |+W2(µ, ν)) .

Then for every µ0 ∈ P2(Rd) the SDE with interaction has a unique solution started
from µ0.
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Well-posedness and superposition principle

SMFE and SDE with Interaction

Lemma

Let X be a solution to the SDE with interaction with µ0 ∈ P2(Rd).
Then µt = µ0 ◦ X−1(·, t), t ≥ 0, is a solution to the SMFE.

Remark: We say that µt , t ≥ 0, is a superposition solution to the Stochastic Mean-Field
equation.

Corollary

Let V ,G be Lipschitz continuous. Then the SMFE

dµt = −∇ · (V (·, µt)µt) dt +
α

2
∇2 : (A(·, µt)µt) dt

−
√
α∇ ·

∫
ξ

G(·, µt , ξ)µtW (dξ, dt)

has a unique solution iff it has only superposition solutions.
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Well-posedness and superposition principle

Uniqueness of Solutions to SMFE

To prove the uniqueness, we show that every solution to the (nonlinear) SMFE is a
superposition solution.

We first freeze the solution µt in the coefficients, considering the linear SPDE:

dνt = −∇ · (v(t, ·)νt) dt +
α

2
∇2 : (a(t, ·)νt) dt

−
√
α∇ ·

∫
ξ

g(t, ·, ξ)νtW (dξ, dt),

where a(t, x) = A(x , µt), v(t, x) = V (x , µt) and g(t, x , ξ) = G(x , µt , ξ).

We remove the second order term and the noise term from the linear SPDE by a
(random) transformation of the space.
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Well-posedness and superposition principle

Random Transformation of State Space

We introduce the field of martingales

M(x , t) =
√
α

∫ t

0

g(s, x , ξ)W (dξ, ds), x ∈ Rd , t ≥ 0.

and consider a solution ψt(x) = (ψ1
t (x), . . . , ψ

d
t (x)) to the stochastic transport equation

ψk
t (x)= xk −

∫ t

0

∇ψk
s (x) ·M(x , ◦ds).

Lemma (see Kunita Stochastic flows and SDEs)

Under some smooth assumption on the coefficient g , the exists a field of dif-
feomorphisms ψ(t, ·) : Rd → Rd , t ≥ 0, which solves the stochastic transport
equation.
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Well-posedness and superposition principle

Transformed SPDE

For the solution νt , t ≥ 0, to the linear SPDE

dνt = −∇ · (v(t, ·)νt) dt +
α

2
∇2 : (a(t, ·)νt) dt −

√
α∇ ·

∫
ξ

g(t, ·, ξ)νtW (dξ, dt),

we define
ρt = νt ◦ ψ−1

t .

Proposition

Let the coefficient g be smooth enough. Then ρt , t ≥ 0, is a solution to the
continuity equationa

dρt = −∇(b(t, ·)ρt)dt, ρ0 = ν0 = µ0,

for some b depending on v and derivatives of a and ψ.

aAmbrosio, Lions, Trevisan,. . .
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