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Modified Massive Arratia Flow

Coalescing particle system: Arratia flow

Arratia flow on R (R. Arratia ’79)

Brownian particles start from every point of an interval;

they move independently and coalesce after meeting;
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Modified Massive Arratia Flow

Mathematical description of Arratia flow

X (u, t) is the position of particle at time t starting at u

1 X (u, 0) = u;

2 X (u, ·) is a Brownian motion in R;
3 X (u, t) ≤ X (v , t), u < v

4 ⟨X (u, ·),X (v , ·)⟩t =
∫ t

0
I{X (u,s)=X (v,s)}ds.
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Modified Massive Arratia Flow

Arratia flow and its generalization

Arratia flow appears as scaling limit of different models

true self-repelling motion (B.Tóth and W. Werner (PTRF ’98))
isotropic stochastic flows of homeomorphisms in R (V. Piterbarg (Ann.
Prob. ’98))
Hastings-Levitov planer aggregation models (J. Norris, A. Turner (Comm.
Math. Phys. ’12)), etc. . .

Further investigation of the Arratia flow

Properties of generated σ-algebra (B. Tsirelson (Probab. Surv. ’04))
n-particle motion (R. Tribe, O.V. Zaboronski (EJP ’04, Comm. Math.
Phys. ’06))
large deviations (A. Dorogovtsev, O. Ostapenko (Stoch. Dyn. ’10)), etc. . .

Generalizations

Brownian web (C. M. Newman et al. (Ann. Prob. ’04), R. Sun, J.M Swart
(MAMS, ’14))
Coalescing non-Brownian particles (S. Evans et al. (PTRF, ’13))
Stochastic flows of kernels (Y. Le Jan and O. Raimond (Ann. Prob. ’04))
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Modified Massive Arratia Flow

Modified Massive Arratia flow

Modified massive Arratia flow on R (K. (Ann. Prob. ’17, EJP ’17))

Brownian particles start from points with masses;

they move independently and coalesce after meeting;

particles sum their masses after meeting and diffusion rate is inversely proportional
to the mass.
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Modified Massive Arratia Flow

Mathematical description

Y (u, t) is the position of particle at time t labeled by u ∈ (0, 1)

1 Y (u, 0) = u;

2 Y (u, ·) is a continuous martingale;

3 Y (u, t) ≤ Y (v , t), u < v ;

4 ⟨Y (u, ·),Y (v , ·)⟩t =
∫ t

0

I{Y (u,s)=Y (v,s)}
m(u,s)

ds,

where m(u, s) = Leb{v : Y (v , s) = Y (u, s)}.
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Modified Massive Arratia Flow

Idea and problems of construction

Idea:

1 construction of a system with n particles started from k
n
with masses 1

n

(diff. rate n);

2 passing to the limit as n → ∞.

Problems:

1 adding a new particle into the system change the behavior of other particles
(different from the Arratia Flow);

2 diffustion rate of particles increases
(hope: it can be compensated by coalescing of particles).
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Modified Massive Arratia Flow

Construction of finite system

Let wk , k = 1, . . . , n, be independent Brownian motions starting from k
n
with diffusion

rate 1
n
.

Notation: yk(t), t ∈ [0,T ], k = 1, . . . , n.
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Modified Massive Arratia Flow

Skorohod space for particle

Let D([0, 1],C [0,T ]) be a space of right continuous functions

[0, 1] ∋ u 7→ Y (u, ·) ∈ C [0,T ]

equipped with Skorohod distance.

Set

Yn(u, t) := yk(t), u ∈
[
k − 1

n
,
k

n

)
.

Then one can show that Yn ∈ D([0, 1],C [0,T ]) and

1 Yn(u, 0) =
k
n
for u ∈

[
k−1
n

, k
n

)
;

2 Yn(u, ·) is a continuous martingale;

3 Yn(u, t) ≤ Yn(v , t), u < v ;

4 ⟨Yn(u, ·),Yn(v , ·)⟩t =
∫ t

0

I{Yn(u,s)=Yn(v,s)}
mn(u,s)

ds,

where mn(u, s) = Leb{v : Yn(v , s) = Yn(u, s)}.
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Modified Massive Arratia Flow

Tightness in Skorohod space

Recall that Yn(u, t) := yk(t), u ∈
[
k−1
n

, k
n

)
.

Proposition (K. [Ann. Prob. ’17])

(i) For each u ∈ [0, 1] the family {Yn(u, ·)}n≥1 is tight in C [0,T ].

(ii) For all n ∈ N, u ∈ [0, 2], h ∈ [0, u] and λ > 0

P
{
∥Yn(u + h, ·)− Yn(u, ·)∥ > λ, ∥Yn(u, ·)− Yn(u − h, ·)∥ > λ

}
≤ Ch2

λ2
.

Here yn(u, ·) = yn(1, ·), u ∈ [1, 2].

Theorem (K. [Ann. Prob. ’17])

(i) {Yn}n≥1 is tight in D([0, 1],C [0,T ]) and its limit point Y satisfies the martin-
gale problem above:

1 Y (u, 0) = u;

2 Y (u, ·) is a continuous martingale;

3 ....
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Modified Massive Arratia Flow

Proof of tightness of {Yn(u, ·)}n≥1

Yn(u, t) = yk(t), t ∈ [0,T ] is a square integrable martingales with quadratic variation

⟨Y (u, ·)⟩t =
∫ t

0

1

mn(u, s)
ds.

The tightness follows from the control of

E 1

mβ
n (u, t)

=

∫ +∞

1

P
{
mn(u, t) <

1

r̃ 1/β

}
dr̃

≤ β

∫ 1

0

1

r 1+β
P {mn(u, t) < r} dr < ∞, β <

3

2
,

where

P{mn(u, t) < r}
≤ P{Yn(u + r , t)− Yn(u, t) > 0, rate of diffusion of Yn(u, t) > 1/r}

≤ P
{
max
s∈[0,t]

w
( s
r

)
< r

}
≤ P

{
max
s∈[0,t]

w (s) < r
√
r

}
≤ Ctr

√
r .
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Modified Massive Arratia Flow

Equation for n particle system

wk , k ∈ [n] := {1, . . . , n}, be indep. Brownian motions starting from k
n
with diff. rate 1

n
.

Consider L2[n] := Rn as a Hilbert space of
functions x : [n] → R with inner product

(x , y)n =
1

n

n∑
k=1

xkyk .

w(t) = (w1(t), . . . ,wn(t)) is a cylindrical
Wiener process on Rn.

Notation:

1 L↑
2 [n] = {y ∈ Rn : y1 ≤ . . . ≤ yn};

2 L2(x) := {y ∈ Rn : y is σ(x)-measurable} = {y ∈ Rn : yk = yl if xk = xl};
3 prσ(x) denotes the projection in L2[n] onto L2(x).

The particle system y(t) = (y1(t), . . . , yn(t)) takes values in L↑
2 [n] and solves the

SDE
dy(t) = prσ(y(t)) dw(t).
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Modified Massive Arratia Flow

Inf.-dim. equation for particle system

We similarly consider

1 L2[0, 1] with usual inner product (f , g) :=
∫ 1

0
f (u)g(u)du;

2 L↑
2 [0, 1] closed subset of functions from L2[0, 1] with non-decreasing version;

3 L2(g) = {f ∈ L2[0, 1] : f is σ(g)-measurable} = {f : f (u) = f (v) if g(u) = g(v)};
4 prσ(g) denotes the projection in L2[0, 1] onto L2(g);

5 Wt is a cylindrical Wiener process in L2[0, 1].

Theorem (K. [EJP ’17])

The Modified Massive Arratia Flow
Yt := Y (·, t) ∈ L↑

2 [0, 1] solves the SDE

dYt = prσ(Yt )
dWt ,

Y0 = id .
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3 L2(g) = {f ∈ L2[0, 1] : f is σ(g)-measurable} = {f : f (u) = f (v) if g(u) = g(v)};
4 prσ(g) denotes the projection in L2[0, 1] onto L2(g);

5 Wt is a cylindrical Wiener process in L2[0, 1].

Theorem (K. [EJP ’17])

The Modified Massive Arratia Flow
Yt := Y (·, t) ∈ L↑

2 [0, 1] solves the SDE

dYt = prσ(Yt )
dWt ,

Y0 = id .
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dYt = prσ(Yt )
dWt . (1)

Theorem (K. [EJP ’17])

For each g ∈ L2+ε[0, 1] there exists a solution Yt to the SDE (1) with Y0 = g .

– Yt(u) describes the evolution of particle started from g(u).

– Initial particle distribution µ0 has the quantil function g (inverse of the distri-
bution function).

Theorem [K., von Renesse (CPAM ’19)]

The family of solutions to

dY ε
t =

√
ε prσ(Y ε

t ) dWt ,

Y0 = id .

satisfies the large deviation principle in C([0,T ], L↑
2 [0, 1]) =⇒ Connection with

Wasserstein space.
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Sticky-Reflected Particle System
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Sticky-Reflected Particle System

Splitting of Particles

Can we replace coalescing by another type of interaction that would lead to a
reversible model?
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Sticky-Reflected Particle System

Coalescing vs. sticky-reflection (1-d case)

Coalescing Brownian motion on R+

dy(t) = I{y(t)>0}dw(t)

[Engelbert, Peskir ’14]
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Sticky-Reflected Particle System

Coalescing vs. sticky-reflection (1-d case)

Sticky-reflected Brownian motion on R+

dy(t) = I{y(t)>0}dw(t) + λI{y(t)=0}dt, λ > 0

[Engelbert, Peskir ’14]
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Sticky-Reflected Particle System

Two particle model

y1(t) ≤ y2(t) denote the positions of particles at time t ≥ 0
m1 = m2 =

1
2
particle mass at start (the total mass is always 1)

Let w1, w2 be two indep. Brownian motions with diffusion rate 2

dyi (t) = I{y1(t)<y2(t)}dwi (t) + I{y1(t)=y2(t)}d
w1(t) + w2(t)

2

+λi I{y1(t)=y2(t)}dt, λ1 ≤ λ2
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Sticky-Reflected Particle System

Uncountable number of particles. Diffusion term

Let Y (u, t) denote the position of the particle labeld by u ∈ [0, 1] at time t ≥ 0.

Y (u, t) ≤ Y (v , t), u ≤ v

dY (u, t) = d
1

m(u, t)

∫
π(u,t)

dWt + drift term

where π(u, t) = {v : Y (u, t) = Y (v , t)} and m(u, t) = Leb{π(u, t)}

Vitalii Konarovskyi (Hamburg University) Interacting Particle Systems with Singular Interactions November 14, 2024 20 / 30



Sticky-Reflected Particle System

Uncountable number of particles. Diffusion term

Let Y (u, t) denote the position of the particle labeld by u ∈ [0, 1] at time t ≥ 0.

Y (u, t) ≤ Y (v , t), u ≤ v

dY (u, t) = d
1

m(u, t)

∫
π(u,t)

dWt + drift term

where π(u, t) = {v : Y (u, t) = Y (v , t)} and m(u, t) = Leb{π(u, t)}

Vitalii Konarovskyi (Hamburg University) Interacting Particle Systems with Singular Interactions November 14, 2024 20 / 30



Sticky-Reflected Particle System

Uncountable number of particles. Drift term

ξ(u) – an interaction potential of the particle u,

where ξ : [0, 1] → R, ξ(u) ≤ ξ(v), u ≤ v .

dY (u, t) = d
1

m(u, t)

∫
π(u,t)

dWt +

(
ξ(u)− 1

m(u, t)

∫
π(u,t)

ξ

)
dt

π(u, t) = {v : Y (u, t) = Y (v , t)} and m(u, t) = Leb{π(u, t)}

Or equivalently for Yt := Y (t, ·) ∈ L↑
2 [0, 1]:

dYt = prσ(Yt )
dWt +

(
ξ − prσ(Yt )

ξ
)
dt

Remark: If ξ(u) = ξ(v), then particles u and v coalesce.
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Sticky-Reflected Particle System

Simulation for ξ(u) = u and Y0(u) = 0

g(u) = 0, ξ(u) = u, u ∈ [0, 1]

The model is similar to the Howitt-Warren flow, where particles do not change
their diffusion rate. [Howitt, Warren (Ann. Probab. ’09);

Schertzer, Sun, Swart (Mem. Amer. Math. Soc. ’14)]
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Sticky-Reflected Particle System

Existence of particle system

Theorem (K. [Ann. Inst. H. Poincaré, ’23])

Let g , ξ : [0, 1] → R be nondecreasing and piecewise 1
2
+-Hölder continuous. Then

there exists a family of continuous processes Y (u, ·), u ∈ [0, 1], such that

1 Y (u, 0) = g(u)

2 Y (u, ·)−
∫ t

0

(
ξ(u)− 1

m(u,s)

∫
π(u,s)

ξ(r)dr
)
ds – is a martingale, where

π(u, t) = {v : Y (u, t) = Y (v , t)}, m(u, s) = Leb{w : Y (w , t) = Y (u, t)};
3 Y (u, t) ≤ Y (v , t), u < v ;

4 ⟨Y (u, ·),Y (v , ·)⟩t =
∫ t

0

I{Y (u,s)=Y (v,s)}
m(u,s)

ds.

Uniqueness of distribution is still an important open problem.
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Sticky-Reflected Particle System

Number of particles

Let N(t) be a number of distinct particles at time t.

Theorem (K. [TSP, ’20])

1
∫ t

0
EN(t)dt < ∞ a.s.

2 If ξ takes infinitely many values. Then

P {∃ a dense set R ⊂ [0,∞) : N(t) = +∞ ∀t ∈ R} = 1
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Sticky-Reflected Particle System

Reversible Particle System

Theorem (K., Renesse [J. Funct. Anal. ’24])

For any non-decreasing right-continuous function ξ there exist a σ-finite measure
Ξ on L↑

2 [0, 1] and a Markov process Y in L↑
2 [0, 1] such that

Ξ – in an invariant measure for Y .

Yt is a solution to

dYt = prYt
dWt + (ξ − prYt

ξ)dt in L↑
2 [0, 1].

Remark: The proof is based on the Dirichlet form approach.
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Connection with geometry of Wasserstein space

Table of Contents

1 Modified Massive Arratia Flow

2 Sticky-Reflected Particle System

3 Connection with geometry of Wasserstein space

Vitalii Konarovskyi (Hamburg University) Interacting Particle Systems with Singular Interactions November 14, 2024 26 / 30



Connection with geometry of Wasserstein space

Rimannian structure on Wasserstein space

Wasserstein Metric on P2(Rd) and Benamou-Brenier formula:

W2
2 (ρ

1, ρ2) := inf
{
E|ξ1 − ξ2|2 : ξi ∼ ρi

}
= inf

{∫ 1

0

∫
Rn

|∇Φ(t, x)|2ρ(t, x)dxdt : ∂tρ(t, x) +∇ · (ρ(t, x)∇Φ(t, x)) = 0,
ρ(0, x) = ρ1, ρ(1, x) = ρ2(x)

}
= inf

{∫ 1

0

gρt (ρ̇t , ρ̇t)dt : ρ0 = ρ1, ρ1 = ρ2, ρ̇t ∈ TρtP2

}

Wasserstein Gradient:

gradW F (ρ) = −∇ ·
(
ρ∇ δ

δρ
F (ρ)

)
.

⇝ Heat equation
∂µt

∂t
=

α

2
∆µt

is a gradient flow on the Wasserstein space:

∂µt

∂t
= − gradW

[α
2
E(µt)

]
[Otto (CPDE’01)]

where E(ρ) =
∫
Rd ρ(x) ln ρ(x)dx
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Connection with geometry of Wasserstein space

Short-time asymptotic of a Brownian motion

Short-time asymptotic formula for a heat kernel

t ln p(t, x , y) = t ln

[
1

(2πt)n/2
e−

∥x−y∥2
2t

]
→ −∥x − y∥2

2
, t → 0 + .

Generalizations

Heat equation with variable coefficients in Rn [Varadhan (CPAM ’67)]

Smooth Riemannian manifold with Ricci curvature bound
[P. Li and S.-T. Yau (Acta Math. ’86)]

Lipschitz Riemannian manifold without any sort of curvature bounds
[J. Norris (Acta Math. 97)]

Infinite-dimensional case for heat kernel generated by a Dirichlet form
[J. Raḿırez (CPAM ’01, Ann. Prob ’03)]

Corollary
If Bt , t ≥ 0, is a Brownian motion on a Riemannian manifold, then

t lnPx {Bt = y} → −d2(x , y)

2
, t → 0+,

with d being the Riemannian distance.
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Corollary
If Bt , t ≥ 0, is a Brownian motion on a Riemannian manifold, then

t lnPx {Bt = y} → −d2(x , y)

2
, t → 0+,

with d being the Riemannian distance.
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Short-time assymptotic of particle system

Theorem (K., Renesse [CPAM ’19] and [J. Funct. Anal. ’24])

Let Y be the Modified Massive Arratia Flow or Sticky-Reflected Particle System
with initial mass distribution µ0. Then the evolution of particle mass

µt = µ0 ◦ Y−1(·, t),

satisfies Varadhan’s formula

t lnP{µt = ν} → −W2
2 (µ0, ν)

2
, t → +0.
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Thank you!
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