Systems of massive diffusion particles with singular interaction

Vitalii Konarovskyi

Hamburg University

Statistical Problems for Stochastic Processes and Random Fields (Igor Sikorsky Kyiv Polytechnic Institute)

Table of Contents

Modified Massive Arratia Flow

- Sticky-Reflected Particle System
- 3 Connection with geometry of Wasserstein space

Coalescing particle system: Arratia flow

Arratia flow on \mathbb{R} (R. Arratia '79)

- Brownian particles start from every point of an interval;
- they move independently and coalesce after meeting;

Mathematical description of Arratia flow

X(u,t) is the position of particle at time t starting at u

- (u,0) = u;
- **2** $X(u, \cdot)$ is a Brownian motion in \mathbb{R} ;
- **3** $X(u,t) \leq X(v,t), u < v$

Arratia flow and its generalization

Arratia flow appears as scaling limit of different models

- true self-repelling motion (B.Tóth and W. Werner (PTRF '98))
- isotropic stochastic flows of homeomorphisms in ℝ (V. Piterbarg (Ann. Prob. '98))
- Hastings-Levitov planer aggregation models (J. Norris, A. Turner (Comm. Math. Phys. '12)), etc...

Further investigation of the Arratia flow

- Properties of generated σ -algebra (B. Tsirelson (Probab. Surv. '04))
- n-particle motion (R. Tribe, O.V. Zaboronski (EJP '04, Comm. Math. Phys. '06))
- large deviations (A. Dorogovtsev, O. Ostapenko (Stoch. Dyn. '10)), etc...

Generalizations

- Brownian web (C. M. Newman et al. (Ann. Prob. '04), R. Sun, J.M Swart (MAMS, '14))
- Coalescing non-Brownian particles (S. Evans et al. (PTRF, '13))
- Stochastic flows of kernels (Y. Le Jan and O. Raimond (Ann. Prob. '04))

Modified Massive Arratia flow

Modified massive Arratia flow on ℝ (K. (Ann. Prob. '17, EJP '17))

- Brownian particles start from points with masses;
- they move independently and coalesce after meeting;
- particles sum their masses after meeting and diffusion rate is inversely proportional to the mass.

Mathematical description

Y(u,t) is the position of particle at time t labeled by $u \in (0,1)$

- Y(u,0) = u;
- 2 $Y(u, \cdot)$ is a continuous martingale;
- **3** $Y(u,t) \leq Y(v,t), u < v;$
- **1** $\langle Y(u,\cdot), Y(v,\cdot) \rangle_t = \int_0^t \frac{\mathbb{I}_{\{Y(u,s)=Y(v,s)\}}}{m(u,s)} ds$, where $m(u,s) = \text{Leb}\{v: Y(v,s) = Y(u,s)\}$.

Idea and problems of construction

Idea:

- **①** construction of a system with *n* particles started from $\frac{k}{n}$ with masses $\frac{1}{n}$ (diff. rate *n*);
- **2** passing to the limit as $n \to \infty$.

Idea and problems of construction

Idea:

- ① construction of a system with n particles started from $\frac{k}{n}$ with masses $\frac{1}{n}$ (diff. rate n);
- **2** passing to the limit as $n \to \infty$.

Problems:

- adding a new particle into the system change the behavior of other particles (different from the Arratia Flow);
- diffustion rate of particles increases (hope: it can be compensated by coalescing of particles).

Construction of finite system

Let w_k , k = 1, ..., n, be independent Brownian motions starting from $\frac{k}{n}$ with diffusion rate $\frac{1}{n}$.

Notation: $y_k(t)$, $t \in [0, T]$, k = 1, ..., n.

Skorohod space for particle

Let D([0,1], C[0,T]) be a space of right continuous functions

$$[0,1]\ni u\mapsto Y(u,\cdot)\in C[0,T]$$

equipped with Skorohod distance.

Skorohod space for particle

Let D([0,1], C[0,T]) be a space of right continuous functions

$$[0,1]\ni u\mapsto Y(u,\cdot)\in C[0,T]$$

equipped with Skorohod distance.

Set

$$Y_n(u,t) := y_k(t), \quad u \in \left[\frac{k-1}{n}, \frac{k}{n}\right).$$

Skorohod space for particle

Let D([0,1], C[0,T]) be a space of right continuous functions

$$[0,1]\ni u\mapsto Y(u,\cdot)\in C[0,T]$$

equipped with Skorohod distance.

Set

$$Y_n(u,t) := y_k(t), \quad u \in \left[\frac{k-1}{n}, \frac{k}{n}\right).$$

Then one can show that $Y_n \in D([0,1], C[0,T])$ and

- $Y_n(u,0) = \frac{k}{n} \text{ for } u \in \left[\frac{k-1}{n}, \frac{k}{n}\right];$
- **2** $Y_n(u, \cdot)$ is a continuous martingale;
- **3** $Y_n(u,t) \le Y_n(v,t), u < v;$

Tightness in Skorohod space

Recall that $Y_n(u,t) := y_k(t), \quad u \in \left[\frac{k-1}{n}, \frac{k}{n}\right).$

Proposition (K. [Ann. Prob. '17])

- (i) For each $u \in [0,1]$ the family $\{Y_n(u,\cdot)\}_{n\geq 1}$ is tight in C[0,T].
- (ii) For all $n \in \mathbb{N}$, $u \in [0, 2]$, $h \in [0, u]$ and $\lambda > 0$

$$\mathbb{P}\big\{\|Y_n(u+h,\cdot)-Y_n(u,\cdot)\|>\lambda,\ \|Y_n(u,\cdot)-Y_n(u-h,\cdot)\|>\lambda\big\}\leq \frac{Ch^2}{\lambda^2}.$$

Here $y_n(u, \cdot) = y_n(1, \cdot), u \in [1, 2].$

Tightness in Skorohod space

Recall that $Y_n(u,t) := y_k(t), \quad u \in \left[\frac{k-1}{n}, \frac{k}{n}\right].$

Proposition (K. [Ann. Prob. '17])

- (i) For each $u \in [0,1]$ the family $\{Y_n(u,\cdot)\}_{n\geq 1}$ is tight in C[0,T].
- (ii) For all $n \in \mathbb{N}$, $u \in [0, 2]$, $h \in [0, u]$ and $\lambda > 0$

$$\mathbb{P}\big\{\|Y_n(u+h,\cdot)-Y_n(u,\cdot)\|>\lambda,\ \|Y_n(u,\cdot)-Y_n(u-h,\cdot)\|>\lambda\big\}\leq \frac{Ch^2}{\lambda^2}.$$

Here $y_n(u, \cdot) = y_n(1, \cdot), u \in [1, 2].$

Theorem (K. [Ann. Prob. '17])

- (i) $\{Y_n\}_{n\geq 1}$ is tight in D([0,1],C[0,T]) and its limit point Y satisfies the martingale problem above:
 - **1** Y(u,0) = u;
 - (2) $Y(u, \cdot)$ is a continuous martingale;

Proof of tightness of $\{Y_n(u,\cdot)\}_{n\geq 1}$

 $Y_n(u,t) = y_k(t), t \in [0,T]$ is a square integrable martingales with quadratic variation

$$\langle Y(u,\cdot)\rangle_t = \int_0^t \frac{1}{m_n(u,s)} ds.$$

Proof of tightness of $\{Y_n(u,\cdot)\}_{n\geq 1}$

 $Y_n(u,t)=y_k(t)$, $t\in[0,T]$ is a square integrable martingales with quadratic variation

$$\langle Y(u,\cdot)\rangle_t = \int_0^t \frac{1}{m_n(u,s)} ds.$$

The tightness follows from the control of

$$\mathbb{E}\frac{1}{m_n^{\beta}(u,t)} = \int_1^{+\infty} \mathbb{P}\left\{m_n(u,t) < \frac{1}{\tilde{r}^{1/\beta}}\right\} d\tilde{r}$$

$$\leq \beta \int_0^1 \frac{1}{r^{1+\beta}} \mathbb{P}\left\{m_n(u,t) < r\right\} dr < \infty, \quad \beta < \frac{3}{2},$$

Proof of tightness of $\{Y_n(u,\cdot)\}_{n\geq 1}$

 $Y_n(u,t) = y_k(t)$, $t \in [0,T]$ is a square integrable martingales with quadratic variation

$$\langle Y(u,\cdot)\rangle_t = \int_0^t \frac{1}{m_n(u,s)} ds.$$

The tightness follows from the control of

$$\begin{split} \mathbb{E}\frac{1}{m_n^{\beta}(u,t)} &= \int_1^{+\infty} \mathbb{P}\left\{m_n(u,t) < \frac{1}{\tilde{r}^{1/\beta}}\right\} d\tilde{r} \\ &\leq \beta \int_0^1 \frac{1}{r^{1+\beta}} \mathbb{P}\left\{m_n(u,t) < r\right\} dr < \infty, \quad \beta < \frac{3}{2}, \end{split}$$

where

$$\begin{split} & \mathbb{P}\{m_n(u,t) < r\} \\ & \leq \mathbb{P}\{Y_n(u+r,t) - Y_n(u,t) > 0, \text{rate of diffusion of } Y_n(u,t) > 1/r\} \\ & \leq \mathbb{P}\left\{\max_{s \in [0,t]} w\left(\frac{s}{r}\right) < r\right\} \leq \mathbb{P}\left\{\max_{s \in [0,t]} w\left(s\right) < r\sqrt{r}\right\} \\ & \leq C_t r\sqrt{r}. \end{split}$$

 w_k , $k \in [n] := \{1, \dots, n\}$, be indep. Brownian motions starting from $\frac{k}{n}$ with diff. rate $\frac{1}{n}$.

 w_k , $k \in [n] := \{1, \dots, n\}$, be indep. Brownian motions starting from $\frac{k}{n}$ with diff. rate $\frac{1}{n}$.

Consider $L_2[n] := \mathbb{R}^n$ as a Hilbert space of functions $x : [n] \to \mathbb{R}$ with inner product

$$(x,y)_n = \frac{1}{n} \sum_{k=1}^n x_k y_k.$$

 $w(t) = (w_1(t), \dots, w_n(t))$ is a cylindrical Wiener process on \mathbb{R}^n .

 w_k , $k \in [n] := \{1, \dots, n\}$, be indep. Brownian motions starting from $\frac{k}{n}$ with diff. rate $\frac{1}{n}$.

Notation:

1
$$L_2^{\uparrow}[n] = \{ y \in \mathbb{R}^n : y_1 \leq \ldots \leq y_n \};$$

Consider $L_2[n] := \mathbb{R}^n$ as a Hilbert space of functions $x : [n] \to \mathbb{R}$ with inner product

$$(x,y)_n = \frac{1}{n} \sum_{k=1}^n x_k y_k.$$

 $w(t) = (w_1(t), \dots, w_n(t))$ is a cylindrical Wiener process on \mathbb{R}^n .

 w_k , $k \in [n] := \{1, \ldots, n\}$, be indep. Brownian motions starting from $\frac{k}{n}$ with diff. rate $\frac{1}{n}$.

Consider $L_2[n] := \mathbb{R}^n$ as a Hilbert space of functions $x : [n] \to \mathbb{R}$ with inner product

$$(x,y)_n = \frac{1}{n} \sum_{k=1}^n x_k y_k.$$

 $w(t) = (w_1(t), \dots, w_n(t))$ is a cylindrical Wiener process on \mathbb{R}^n .

Notation:

- **1** $L_2^{\uparrow}[n] = \{ y \in \mathbb{R}^n : y_1 < \ldots < y_n \};$

 w_k , $k \in [n] := \{1, \dots, n\}$, be indep. Brownian motions starting from $\frac{k}{n}$ with diff. rate $\frac{1}{n}$.

Consider $L_2[n] := \mathbb{R}^n$ as a Hilbert space of functions $x : [n] \to \mathbb{R}$ with inner product

$$(x,y)_n = \frac{1}{n} \sum_{k=1}^n x_k y_k.$$

 $w(t) = (w_1(t), \dots, w_n(t))$ is a cylindrical Wiener process on \mathbb{R}^n .

Notation:

- **1** pr $_{\sigma(x)}$ denotes the projection in $L_2[n]$ onto $L_2(x)$.

 w_k , $k \in [n] := \{1, \dots, n\}$, be indep. Brownian motions starting from $\frac{k}{n}$ with diff. rate $\frac{1}{n}$.

Consider $L_2[n] := \mathbb{R}^n$ as a Hilbert space of functions $x : [n] \to \mathbb{R}$ with inner product

$$(x,y)_n = \frac{1}{n} \sum_{k=1}^n x_k y_k.$$

 $w(t) = (w_1(t), \dots, w_n(t))$ is a cylindrical Wiener process on \mathbb{R}^n .

Notation:

- \bigcirc pr_{$\sigma(x)$} denotes the projection in $L_2[n]$ onto $L_2(x)$.

The particle system $y(t)=(y_1(t),\ldots,y_n(t))$ takes values in $L_2^\uparrow[n]$ and solves the SDE

$$dy(t) = \operatorname{pr}_{\sigma(y(t))} dw(t).$$

We similarly consider

1 $L_2[0,1]$ with usual inner product $(f,g) := \int_0^1 f(u)g(u)du$;

- **1** $L_2[0,1]$ with usual inner product $(f,g) := \int_0^1 f(u)g(u)du$;
- **Q** $L_2^{\uparrow}[0,1]$ closed subset of functions from $L_2[0,1]$ with non-decreasing version;

- **1** $L_2[0,1]$ with usual inner product $(f,g) := \int_0^1 f(u)g(u)du$;
- ② $L_2^{\uparrow}[0,1]$ closed subset of functions from $L_2[0,1]$ with non-decreasing version;
- **①** $L_2(g) = \{ f \in L_2[0,1] : f \text{ is } \sigma(g)\text{-measurable} \} = \{ f : f(u) = f(v) \text{ if } g(u) = g(v) \};$

- **1** $L_2[0,1]$ with usual inner product $(f,g) := \int_0^1 f(u)g(u)du$;
- ② $L_2^{\uparrow}[0,1]$ closed subset of functions from $L_2[0,1]$ with non-decreasing version;
- **①** $L_2(g) = \{ f \in L_2[0,1] : f \text{ is } \sigma(g)\text{-measurable} \} = \{ f : f(u) = f(v) \text{ if } g(u) = g(v) \};$
- pr_{$\sigma(g)$} denotes the projection in $L_2[0,1]$ onto $L_2(g)$;

- **1** $L_2[0,1]$ with usual inner product $(f,g) := \int_0^1 f(u)g(u)du$;
- ② $L_2^{\uparrow}[0,1]$ closed subset of functions from $L_2[0,1]$ with non-decreasing version;
- **①** $L_2(g) = \{ f \in L_2[0,1] : f \text{ is } \sigma(g)\text{-measurable} \} = \{ f : f(u) = f(v) \text{ if } g(u) = g(v) \};$
- **4** $\operatorname{pr}_{\sigma(g)}$ denotes the projection in $L_2[0,1]$ onto $L_2(g)$;
- **1** W_t is a cylindrical Wiener process in $L_2[0,1]$.

We similarly consider

- **1** $L_2[0,1]$ with usual inner product $(f,g) := \int_0^1 f(u)g(u)du$;
- ② $L_2^{\uparrow}[0,1]$ closed subset of functions from $L_2[0,1]$ with non-decreasing version;
- **②** $L_2(g) = \{ f \in L_2[0,1] : f \text{ is } \sigma(g)\text{-measurable} \} = \{ f : f(u) = f(v) \text{ if } g(u) = g(v) \};$
- **4** $\operatorname{pr}_{\sigma(g)}$ denotes the projection in $L_2[0,1]$ onto $L_2(g)$;
- **5** W_t is a cylindrical Wiener process in $L_2[0,1]$.

Theorem (K. [EJP '17])

The Modified Massive Arratia Flow $Y_t := Y(\cdot, t) \in L_2^{\uparrow}[0, 1]$ solves the SDE

$$dY_t = \operatorname{pr}_{\sigma(Y_t)} dW_t,$$

$$Y_0 = id.$$

Infinite-dimensional SDE in $L_2^\uparrow[0,1]$ for the Modified Massive Arratia Flow:

$$dY_t = \operatorname{pr}_{\sigma(Y_t)} dW_t. \tag{1}$$

Theorem (K. [EJP '17])

For each $g \in L_{2+\varepsilon}[0,1]$ there exists a solution Y_t to the SDE (1) with $Y_0 = g$.

Infinite-dimensional SDE in $L_2^{\uparrow}[0,1]$ for the Modified Massive Arratia Flow:

$$dY_t = \operatorname{pr}_{\sigma(Y_t)} dW_t. \tag{1}$$

Theorem (K. [EJP '17])

For each $g \in L_{2+\varepsilon}[0,1]$ there exists a solution Y_t to the SDE (1) with $Y_0 = g$.

 $-Y_t(u)$ describes the evolution of particle started from g(u).

Infinite-dimensional SDE in $L_2^{\uparrow}[0,1]$ for the Modified Massive Arratia Flow:

$$dY_t = \operatorname{pr}_{\sigma(Y_t)} dW_t. \tag{1}$$

Theorem (K. [EJP '17])

For each $g \in L_{2+\varepsilon}[0,1]$ there exists a solution Y_t to the SDE (1) with $Y_0 = g$.

- $Y_t(u)$ describes the evolution of particle started from g(u).
- Initial particle distribution μ_0 has the quantil function g (inverse of the distribution function).

Infinite-dimensional SDE in $L_2^{\uparrow}[0,1]$ for the Modified Massive Arratia Flow:

$$dY_t = \operatorname{pr}_{\sigma(Y_t)} dW_t. \tag{1}$$

Theorem (K. [EJP '17])

For each $g \in L_{2+\varepsilon}[0,1]$ there exists a solution Y_t to the SDE (1) with $Y_0 = g$.

- $Y_t(u)$ describes the evolution of particle started from g(u).
- Initial particle distribution μ_0 has the quantil function g (inverse of the distribution function).

Theorem [K., von Renesse (CPAM '19)]

The family of solutions to

$$dY_t^{\varepsilon} = \sqrt{\varepsilon} \operatorname{pr}_{\sigma(Y_t^{\varepsilon})} dW_t,$$
$$Y_0 = id.$$

satisfies the large deviation principle in $C([0,T],L_2^{\uparrow}[0,1]) \implies$ Connection with Wasserstein space.

Table of Contents

1 Modified Massive Arratia Flow

- 2 Sticky-Reflected Particle System
- 3 Connection with geometry of Wasserstein space

Splitting of Particles

Can we replace coalescing by another type of interaction that would lead to a reversible model?

Splitting of Particles

Can we replace coalescing by another type of interaction that would lead to a reversible model?

Coalescing vs. sticky-reflection (1-d case)

Coalescing Brownian motion on \mathbb{R}_+

$$dy(t) = \mathbb{I}_{\{y(t)>0\}} dw(t)$$

Coalescing vs. sticky-reflection (1-d case)

Sticky-reflected Brownian motion on \mathbb{R}_+

$$dy(t) = \mathbb{I}_{\{y(t)>0\}} dw(t) + \lambda \mathbb{I}_{\{y(t)=0\}} dt, \quad \lambda > 0$$

[Engelbert, Peskir '14]

Two particle model

 $y_1(t) \leq y_2(t)$ denote the positions of particles at time $t \geq 0$ $m_1 = m_2 = \frac{1}{2}$ particle mass at start (the total mass is always 1)

Let w_1 , w_2 be two indep. Brownian motions with diffusion rate 2

$$dy_i(t) = \mathbb{I}_{\{y_1(t) < y_2(t)\}} dw_i(t) + \mathbb{I}_{\{y_1(t) = y_2(t)\}} d\frac{w_1(t) + w_2(t)}{2}$$

Two particle model

 $y_1(t) \leq y_2(t)$ denote the positions of particles at time $t \geq 0$ $m_1 = m_2 = \frac{1}{2}$ particle mass at start (the total mass is always 1)

Let w_1 , w_2 be two indep. Brownian motions with diffusion rate 2

$$dy_i(t) = \mathbb{I}_{\{y_1(t) < y_2(t)\}} dw_i(t) + \mathbb{I}_{\{y_1(t) = y_2(t)\}} d\frac{w_1(t) + w_2(t)}{2}$$

$$+\lambda_i \mathbb{I}_{\{y_1(t)=y_2(t)\}} dt, \quad \lambda_1 \leq \lambda_2$$

Let Y(u, t) denote the position of the particle labeld by $u \in [0, 1]$ at time $t \ge 0$.

$$Y(u,t) < Y(v,t), \quad u < v$$

Let Y(u, t) denote the position of the particle labeld by $u \in [0, 1]$ at time $t \ge 0$.

$$Y(u,t) \leq Y(v,t), \quad u \leq v$$

$$dY(u,t) = d\frac{1}{m(u,t)} \int_{\pi(u,t)} dW_t + \text{drift term}$$

where $\pi(u, t) = \{v : Y(u, t) = Y(v, t)\}\$ and $m(u, t) = \text{Leb}\{\pi(u, t)\}\$

 $\xi(u)$ – an **interaction potential** of the particle u,

where $\xi : [0,1] \to \mathbb{R}$, $\xi(u) \le \xi(v)$, $u \le v$.

 $\xi(u)$ – an **interaction potential** of the particle u,

where $\xi : [0,1] \to \mathbb{R}$, $\xi(u) \le \xi(v)$, $u \le v$.

$$dY(u,t) = d\frac{1}{m(u,t)} \int_{\pi(u,t)} dW_t + \left(\xi(u) - \frac{1}{m(u,t)} \int_{\pi(u,t)} \xi\right) dt$$

 $\pi(u,t) = \{v: Y(u,t) = Y(v,t)\} \text{ and } m(u,t) = \text{Leb}\{\pi(u,t)\}$

 $\xi(u)$ – an interaction potential of the particle u,

where $\xi: [0,1] \to \mathbb{R}$, $\xi(u) \le \xi(v)$, $u \le v$.

$$dY(u,t) = d\frac{1}{m(u,t)} \int_{\pi(u,t)} dW_t + \left(\xi(u) - \frac{1}{m(u,t)} \int_{\pi(u,t)} \xi\right) dt$$

$$\pi(u,t) = \{v : Y(u,t) = Y(v,t)\} \text{ and } m(u,t) = \text{Leb}\{\pi(u,t)\}$$

Or equivalently for
$$Y_t := Y(t,\cdot) \in L_2^\uparrow[0,1]$$
:

$$dY_t = \operatorname{pr}_{\sigma(Y_t)} dW_t + \left(\xi - \operatorname{pr}_{\sigma(Y_t)} \xi\right) dt$$

 $\xi(u)$ – an **interaction potential** of the particle u,

where $\xi : [0,1] \to \mathbb{R}$, $\xi(u) \le \xi(v)$, $u \le v$.

$$dY(u,t) = d\frac{1}{m(u,t)} \int_{\pi(u,t)} dW_t + \left(\xi(u) - \frac{1}{m(u,t)} \int_{\pi(u,t)} \xi\right) dt$$

$$\pi(u,t) = \{v : Y(u,t) = Y(v,t)\} \text{ and } m(u,t) = \text{Leb}\{\pi(u,t)\}$$

Or equivalently for
$$Y_t:=Y(t,\cdot)\in L_2^\uparrow[0,1]$$
:
$$dY_t=\operatorname{pr}_{\sigma(Y_t)}dW_t+\left(\xi-\operatorname{pr}_{\sigma(Y_t)}\xi\right)dt$$

Remark: If $\xi(u) = \xi(v)$, then particles u and v coalesce.

Simulation for $\xi(u) = u$ and $Y_0(u) = 0$

$$g(u) = 0, \ \xi(u) = u, \ u \in [0,1]$$

The model is similar to the Howitt-Warren flow, where particles do not change their diffusion rate. [Howitt, Warren (Ann. Probab. '09); Schertzer, Sun, Swart (Mem. Amer. Math. Soc. '14)]

Existence of particle system

Theorem (K. [Ann. Inst. H. Poincaré, '23])

Let $g, \xi : [0,1] \to \mathbb{R}$ be nondecreasing and piecewise $\frac{1}{2}$ +-Hölder continuous. Then there exists a family of continuous processes $Y(u,\cdot)$, $u \in [0,1]$, such that

- Y(u,0) = g(u)
- ② $Y(u,\cdot) \int_0^t \left(\xi(u) \frac{1}{m(u,s)} \int_{\pi(u,s)} \xi(r) dr\right) ds$ is a martingale, where $\pi(u,t) = \{v: \ Y(u,t) = Y(v,t)\}, \ m(u,s) = \text{Leb}\{w: Y(w,t) = Y(u,t)\};$
- **3** $Y(u, t) \le Y(v, t), u < v;$

Existence of particle system

Theorem (K. [Ann. Inst. H. Poincaré, '23])

Let $g, \xi : [0,1] \to \mathbb{R}$ be nondecreasing and piecewise $\frac{1}{2}$ +-Hölder continuous. Then there exists a family of continuous processes $Y(u,\cdot)$, $u \in [0,1]$, such that

- ② $Y(u,\cdot) \int_0^t \left(\xi(u) \frac{1}{m(u,s)} \int_{\pi(u,s)} \xi(r) dr\right) ds$ is a martingale, where $\pi(u,t) = \{v: \ Y(u,t) = Y(v,t)\}, \ m(u,s) = \text{Leb}\{w: Y(w,t) = Y(u,t)\};$
- **3** $Y(u, t) \le Y(v, t), u < v;$

Uniqueness of distribution is still an important open problem.

Number of particles

Let N(t) be a number of distinct particles at time t.

Theorem (K. [TSP, '20])

Number of particles

Let N(t) be a number of distinct particles at time t.

Theorem (K. [TSP, '20])

- 2 If ξ takes infinitely many values. Then

$$\mathbb{P}\left\{\exists \text{ a dense set } R\subset [0,\infty): \ \ \textit{N}(t)=+\infty \ \ \forall t\in R\right\}=1$$

Reversible Particle System

Theorem (K., Renesse [J. Funct. Anal. '24])

For any non-decreasing right-continuous function ξ there exist a σ -finite measure Ξ on $L_2^{\uparrow}[0,1]$ and a Markov process Y in $L_2^{\uparrow}[0,1]$ such that

- \bullet Ξ in an invariant measure for Y.
- \bullet Y_t is a solution to

$$dY_t = \operatorname{pr}_{Y_t} dW_t + (\xi - \operatorname{pr}_{Y_t} \xi) dt$$
 in $L_2^{\uparrow}[0, 1]$.

Reversible Particle System

Theorem (K., Renesse [J. Funct. Anal. '24])

For any non-decreasing right-continuous function ξ there exist a σ -finite measure Ξ on $L_2^{\uparrow}[0,1]$ and a Markov process Y in $L_2^{\uparrow}[0,1]$ such that

- \bullet Ξ in an invariant measure for Y.
- \bullet Y_t is a solution to

$$dY_t = \operatorname{pr}_{Y_t} dW_t + (\xi - \operatorname{pr}_{Y_t} \xi) dt$$
 in $L_2^{\uparrow}[0, 1]$.

Remark: The proof is based on the Dirichlet form approach.

Table of Contents

1 Modified Massive Arratia Flow

- 2 Sticky-Reflected Particle System
- 3 Connection with geometry of Wasserstein space

Wasserstein Metric on $\mathcal{P}_2(\mathbb{R}^d)$ and Benamou-Brenier formula:

$$\begin{split} \mathcal{W}_{2}^{2}(\rho^{1},\rho^{2}) &:= \inf \left\{ \mathbb{E} |\xi^{1} - \xi^{2}|^{2} : \ \xi^{i} \sim \rho^{i} \right\} \\ &= \inf \left\{ \int_{0}^{1} \int_{\mathbb{R}^{n}} |\nabla \Phi(t,x)|^{2} \rho(t,x) dx dt : \begin{array}{c} \partial_{t} \rho(t,x) + \nabla \cdot (\rho(t,x) \nabla \Phi(t,x)) = 0, \\ \rho(0,x) = \rho^{1}, \ \rho(1,x) = \rho^{2}(x) \end{array} \right\} \\ &= \inf \left\{ \int_{0}^{1} g_{\rho_{t}}(\dot{\rho}_{t},\dot{\rho}_{t}) dt : \ \rho_{0} = \rho^{1}, \ \rho_{1} = \rho^{2}, \quad \dot{\rho}_{t} \in T_{\rho_{t}} \mathcal{P}_{2} \right\} \end{split}$$

Wasserstein Metric on $\mathcal{P}_2(\mathbb{R}^d)$ and Benamou-Brenier formula:

$$\begin{split} \mathcal{W}_{2}^{2}(\rho^{1},\rho^{2}) &:= \inf \left\{ \mathbb{E} |\xi^{1} - \xi^{2}|^{2} : \ \xi^{i} \sim \rho^{i} \right\} \\ &= \inf \left\{ \int_{0}^{1} \int_{\mathbb{R}^{n}} |\nabla \Phi(t,x)|^{2} \rho(t,x) dx dt : \begin{array}{c} \partial_{t} \rho(t,x) + \nabla \cdot (\rho(t,x) \nabla \Phi(t,x)) = 0, \\ \rho(0,x) = \rho^{1}, \ \rho(1,x) = \rho^{2}(x) \end{array} \right\} \\ &= \inf \left\{ \int_{0}^{1} g_{\rho_{t}}(\dot{\rho}_{t},\dot{\rho}_{t}) dt : \ \rho_{0} = \rho^{1}, \ \rho_{1} = \rho^{2}, \quad \dot{\rho}_{t} \in \mathcal{T}_{\rho_{t}} \mathcal{P}_{2} \right\} \end{split}$$

Wasserstein Gradient:

$$\operatorname{\mathsf{grad}}_{\mathcal{W}} \mathsf{F}(
ho) = -
abla \cdot \left(
ho
abla \frac{\delta}{\delta
ho} \mathsf{F}(
ho) \right).$$

Wasserstein Metric on $\mathcal{P}_2(\mathbb{R}^d)$ and Benamou-Brenier formula:

$$\begin{split} \mathcal{W}_{2}^{2}(\rho^{1},\rho^{2}) &:= \inf \left\{ \mathbb{E} |\xi^{1} - \xi^{2}|^{2} : \ \xi^{i} \sim \rho^{i} \right\} \\ &= \inf \left\{ \int_{0}^{1} \int_{\mathbb{R}^{n}} |\nabla \Phi(t,x)|^{2} \rho(t,x) dx dt : \begin{array}{c} \partial_{t} \rho(t,x) + \nabla \cdot (\rho(t,x) \nabla \Phi(t,x)) = 0, \\ \rho(0,x) = \rho^{1}, \ \rho(1,x) = \rho^{2}(x) \end{array} \right\} \\ &= \inf \left\{ \int_{0}^{1} g_{\rho_{t}}(\dot{\rho}_{t},\dot{\rho}_{t}) dt : \ \rho_{0} = \rho^{1}, \ \rho_{1} = \rho^{2}, \quad \dot{\rho}_{t} \in \mathcal{T}_{\rho_{t}} \mathcal{P}_{2} \right\} \end{split}$$

Wasserstein Gradient:

$$\operatorname{\mathsf{grad}}_{\mathcal{W}} \mathsf{F}(
ho) = -
abla \cdot \left(
ho
abla \frac{\delta}{\delta
ho} \mathsf{F}(
ho) \right).$$

→ Heat equation

$$\frac{\partial \mu_t}{\partial t} = \frac{\alpha}{2} \Delta \mu_t$$

is a gradient flow on the Wasserstein space:

$$\frac{\partial \mu_t}{\partial t} = -\operatorname{grad}_{\mathcal{W}}\left[\frac{\alpha}{2}E(\mu_t)\right] \qquad \qquad [\operatorname{Otto}\;(\operatorname{CPDE'01})]$$

where $E(\rho) = \int_{\mathbb{R}^d} \rho(x) \ln \rho(x) dx$

Wasserstein Metric on $\mathcal{P}_2(\mathbb{R}^d)$ and Benamou-Brenier formula:

$$\mathcal{W}_{2}^{2}(\rho^{1}, \rho^{2}) := \inf \left\{ \mathbb{E}|\xi^{1} - \xi^{2}|^{2} : \ \xi^{i} \sim \rho^{i} \right\}$$

$$= \inf \left\{ \int_{0}^{1} \int |\nabla \Phi(t, x)|^{2} \rho(t, x) dx dt : \frac{\partial_{t} \rho(t, x) + \nabla \cdot (\rho(t, x) \nabla \Phi(t, x)) = 0}{\partial_{t} \rho(t, x) + \nabla \cdot (\rho(t, x) \nabla \Phi(t, x)) = 0}, \right\}$$

Which measure-valued process is a

Wass€

"good" candidate for a

Brownian motion on \mathcal{P}_2 ?

~→ Hea

$$\frac{\partial \mu_t}{\partial t} = \frac{\alpha}{2} \Delta \mu_t$$

is a gradient flow on the Wasserstein space:

$$\frac{\partial \mu_t}{\partial t} = -\operatorname{grad}_{\mathcal{W}}\left[\frac{\alpha}{2}E(\mu_t)\right] \qquad \qquad [\operatorname{Otto}\;(\operatorname{CPDE'01})]$$

where $E(\rho) = \int_{\mathbb{R}^d} \rho(x) \ln \rho(x) dx$

Short-time asymptotic of a Brownian motion

Short-time asymptotic formula for a heat kernel

$$t \ln p(t, x, y) = t \ln \left[\frac{1}{(2\pi t)^{n/2}} e^{-\frac{\|x - y\|^2}{2t}} \right] \to -\frac{\|x - y\|^2}{2}, \quad t \to 0 + .$$

Short-time asymptotic of a Brownian motion

Short-time asymptotic formula for a heat kernel

$$t \ln p(t, x, y) = t \ln \left[\frac{1}{(2\pi t)^{n/2}} e^{-\frac{\|x - y\|^2}{2t}} \right] \to -\frac{\|x - y\|^2}{2}, \quad t \to 0 + .$$

Generalizations

- Heat equation with variable coefficients in \mathbb{R}^n [Varadhan (CPAM '67)]
- Smooth Riemannian manifold with Ricci curvature bound [P. Li and S.-T. Yau (Acta Math. '86)]
- Lipschitz Riemannian manifold without any sort of curvature bounds [J. Norris (Acta Math. 97)]
- Infinite-dimensional case for heat kernel generated by a Dirichlet form [J. Ramírez (CPAM '01, Ann. Prob '03)]

28 / 30

Short-time asymptotic of a Brownian motion

Short-time asymptotic formula for a heat kernel

$$t \ln p(t, x, y) = t \ln \left[\frac{1}{(2\pi t)^{n/2}} e^{-\frac{\|x - y\|^2}{2t}} \right] \to -\frac{\|x - y\|^2}{2}, \quad t \to 0 + .$$

Generalizations

- Heat equation with variable coefficients in \mathbb{R}^n [Varadhan (CPAM '67)]
- Smooth Riemannian manifold with Ricci curvature bound [P. Li and S.-T. Yau (Acta Math. '86)]
- Lipschitz Riemannian manifold without any sort of curvature bounds
 [J. Norris (Acta Math. 97)]
- Infinite-dimensional case for heat kernel generated by a Dirichlet form
 [J. Ramírez (CPAM '01, Ann. Prob '03)]

Corollary

If B_t , $t \ge 0$, is a Brownian motion on a Riemannian manifold, then

$$t \ln \mathbb{P}_{x} \left\{ B_{t} = y \right\} \rightarrow -\frac{d^{2}(x,y)}{2}, \quad t \rightarrow 0+,$$

with *d* being the Riemannian distance.

Short-time assymptotic of particle system

Theorem (K., Renesse [CPAM '19] and [J. Funct. Anal. '24])

Let Y be the Modified Massive Arratia Flow or Sticky-Reflected Particle System with initial mass distribution μ_0 . Then the evolution of particle mass

$$\mu_t = \mu_0 \circ Y^{-1}(\cdot, t),$$

satisfies Varadhan's formula

$$t \ln \mathbb{P}\{\mu_t = \nu\} \rightarrow -\frac{\mathcal{W}_2^2(\mu_0, \nu)}{2}, \quad t \rightarrow +0.$$

Reference

Coalescing particle system

- Konarovskyi, A system of coalescing diffusion particles on \mathbb{R} , Ann. Prob. (2017)
- Konarovskyi, On asymptotic behavior of the modified Arratia flow, Electron. J. Probab. (2017)
- Konarovskyi, Marx, On Conditioning Brownian Particles to Coalesce, J. Theor. Prob (2023)

DP and Varadhan's Formula

 Konarovskyi, Renesse, Modified Massive Arratia flow and Wasserstein diffusion, Comm. Pure Appl. Math. (2019)

Sticky-Reflected Particle System

- Konarovskyi, Coalescing-Fragmentating Wasserstein Dynamics: particle approach, Ann. Inst. H. Poincaré, (2023)
- Konarovskyi, Renesse, Reversible Coalescing-Fragmentating Wasserstein Dynamics on the Real Line, J. Funct. Anal. (2024)
- Konarovskyi, On Number of Particles in Coalescing-Fragmentating Wasserstein Dynamics, Theory Stoch. Process. (2020)

Dean-Kawasaki Equation

- Konarovskyi, Lehmann, Renesse, Dean-Kawasaki dynamics: III-posedness vs. Triviality, Electron. Comm. Probab. (2019)
- Konarovskyi, Lehmann, Renesse, Dean-Kawasaki dynamics with smooth drift potential. J. Stat. Phys. (2020)

4 D > 4 A > 4 B > 4 B >