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Coalescing particle system: Arratia flow

Arratia flow on R [R. Arratia '79]

@ Brownian particles start from every point of an interval or real line;

@ they move independently and coalesce after meeting;
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Arratia flow and its generalization

@ Arratia flow appears as scaling limit of different models
e true self-repelling motion [B.Téth and W. Werner (PTRF '98)]
e isotropic stochastic flows of homeomorphisms in R [V. Piterbarg (Ann.
Prob. '98)]
e Hastings-Levitov planer aggregation models [J. Norris, A. Turner
(Comm. Math. Phys. '12)], etc...
@ Further investigation of the Arratia flow
o Properties of generated o-algebra [B. Tsirelson (Probab. Surv. '04)]
e n-particle motion [R. Tribe, O.V. Zaboronski (EJP '04, Comm. Math.

Phys. '06)]
o large deviations [A. Dorogovtsev, O. Ostapenko (Stoch. Dyn. '10)],
etc..

@ Generalizations
e Brownian web [C. M. Newman et al. (Ann. Prob. '04), R. Sun, J.M
Swart (MAMS, '14)]
o Coalescing non-Brownian particles [S. Evans et al. (PTRF, '13)]
e Stochastic flows of kernels [Y. Le Jan and O. Raimond (Ann. Prob.

Vitalii Konarovskyi (University of Hamburg a Quantitative CLT for SSEP February 25, 2025




Modifed Massive Arratia Flow |
Modified Massive Arratia flow (MMAF)
Modified massive Arratia flow on R [K. (Ann. Prob. '17, EJP '17)]

@ Brownian particles start from points with masses;
@ they move independently and coalesce after meeting;

@ particles sum their masses after meeting and diffusion rate is inversely
proportional to the mass.
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el
Mathematical description and properties

Mathematical description
Let X(u, t) is the position of particle at time t labeled by u
Q X(u,0)=u;
@ X(u,-) is a continuous martingale;
Q X(u,t) < X(v,t), u<v;
Q (X(u,-),X(v,))tar,, =0, where 7, , = inf {t : X(u,t) = X(v,t)};
Q@ X(u,)))e= fot ﬁds, where m(u, s) is the mass of part. u at time s
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el
Mathematical description and properties

Mathematical description
Let X(u, t) is the position of particle at time t labeled by u

Q X(u,0)=u;

@ X(u,-) is a continuous martingale;

Q X(u,t) < X(v,t), u<v;

Q (X(u,-),X(v,))tar,, =0, where 7, , = inf {t : X(u,t) = X(v,t)};

Q@ X(u,)))e= fot ﬁds, where m(u, s) is the mass of part. u at time s
Connection with Dean-Kawasaki eq. and Wasserstein diff. [K., Renesse, CPAM '19]

The process ug, t > 0, that describes the evolution of particle masses solves

Lo

and satisfies Varadhan's formulat

W22(u0 V)

P{us=v}i~e — 2= , t— 0+,
with Wasserstein distance W, in P,(R).
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B
MMAF started from integer points

Let {Xk(t), t >0, k € Z} be a family of processes such that

@ X is a continuous square-integrable martingale with respect to the joint filtration;
@ X.(0) = k;

Q Xi(t) < Xi(t) for k < I;

Q (X, XiYear,, =0, where 7 = inf {t : Xik(t) = Xi(t)};

Q (X = [, 725, where mi(t) = #{/: 3s <t X(s) = Xi(s)};

Theorem [K (TVP '10)]
There exists a family of stochastic processes {Xk(t), t > 0, k € Z} satisfying

the assumptions 1.-5. Moreover, the assumptions 1.-5. uniquely determine the
distribution in C[0, 00)Z.
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CLT for occupation measure

@ We define the occupation measure defined by

N:(A) = # (An{Xk(t),k € Z}), Ae€BR).
@ Let P denote the set of bounded measurable one-periodic functions f : R — R;
@ For f € P set

Apif = /k f(u)Ne(du).
k=1

Theorem [Dorogovtsev, K., von Renesse '24]

For every f € Pand t >0

n

> " (Aef —E[Aref]) 5 N (0,07(F))

k=1

Y{(f) :=

S

with

o2(f) = Var Ao f +2Y Cov(Ao.f, Axef).

k=1
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Comparison with similar result for Arratia flow

Let N be the occupation measure for the Arratia flow, A be defined similarly for A

Theorem [Dorogovtsev, Hlyniana (Stoch. and Dyn. ’23)]

For every f ¢ P and t >0

1 — - ~ d 2
— Aiif —E [Acf|) = N (0,5:(F)
75 3 (st ~E [f]) £ 4 (0.5100)

with

52(f) = Var Ag . f + 22 Cov(Ao.if, Aiif)

\ﬁ/ ( u)du+/ / u)f(v)Ge(u, v)dudv,

with

Gi(u,v) =ge(u—v)+2) g(u—v+k), glu—v)=pP(uv)-
k=1
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Fluctuations in MMAF

Strategy of proof of both results

The proofs are based on the classical CLT for stationary sequences

(e.g. [Ibragimov, Linnik '71])

Let &« be a stationaly sequence satisfying the strong mixing condition with mixing
coefficient

a(n) = sup
Aem® __ Bem; o

and E [|§k|2+6] <oo. IfYy 7, a(n)H% < 00, then

|P(AB) — P(A)P(B)| — 0

1 z d 5
—= > (& —E[&]) = N(0,0%),
>

with

0% = Var& + 2 Z Cov(&, &) -

k=1
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Sapised e
Strong mixing condition for MMAF

We set for f € Pand t >0

w(j)= sup  [P(ANB)—PAPR(B), j>i,
AEE)J?’;OC,BEDJIJ?C

where

M? = o {Aw+f, a< k < b}.
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Sapised e
Strong mixing condition for MMAF

We set for f € Pand t >0

w(j)= sup  [P(ANB)—PAPR(B), j>i,
Aemiw,semjx

where
M? = o {Aw+f, a< k < b}.

Proposition [Dorogovtsev, K., von Renesse '24]

There exist a constant C > 0 and 3 > 0 depending only on f and t such that

ai(j) < Ce AVIT

for all i <.
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Gap property for independent Brownian motions

Lemma [K., (TVP "10)]

Let wk, k € No = N U {0}, be a family of independent Brownian motions on R
with diffusion rate 1 and wi(0) = k. Then for every ¢ € (0, %) the equality

IP’{ max  max Wk(t“)gnJr%7 tg[]oi,nT]W"H(t)>n+;+€i'o'}1

ke{0,...,n} t€[0,T]

holds.
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Strong mixing condition for MMAF - ||
Construction of MMAF

We construct the process {X{},__, . from the family of independent Brownian
motions by coalescing their paths by a special way:
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strong mixing condition for M [
Construction of MMAFs for Z~; and Z,

.. n,+ n,—
We similarly construct the processes {Xk }k:O,...,n and {Xk }szn,,..,l from the same
family of independent Brownian motions:
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Sapised e
Passing to the limit

Lemma

@ The process X| converges a.s. in the discrete topology of C[0, T] to a
process Xy as n — oo for each k € 7Z, where {Xk}kez as the MMAF
started from Z.

@ The process X,"" converges a.s. in the discrete topology of C[0, T] to a

process X" as n — oo for each k € Z>o, where {X:}kez as the MMAF
>0

started from Zxq.
© The same for X"~ .
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Strong mixing condition for MMAF _
Control of probability of appearing of gaps

We set

1 1
<l . 1
{ke%?fﬁ selo.d wi(s) <J+ 2’ ey wals) >t 2}

and

v —1} s€[0,1] 27 scpo.] 2}

foralljeNand t €0, T].

_ 1 1
A7 (t) = {k . min min wk(s) > —j— =, max w_j_1(s) < —j —
e{—J
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Strong mixing condition for MMAF _
Control of probability of appearing of gaps

We set

1 1
AT (t) := <j4+ = in w; i+ =
7= { e, mpe <0 5w > )+ 3}

and

1 1
A_t = H B >_ji_ = o 1
() {kE{TT,I}s?[é?r] wi(s) = = 2’ 5?[3,)§1W i-1(s) < = 2}
for all je Nand t €0, T].

We also define
N N

Bu(t) = JAT(t) and By(t)=[JA (1)

j=1 k=1
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Strong mixing condition for MMAF _
Control of probability of appearing of gaps

We set

1 1
AT (t) := <j4+ = in w; i+ =
7= { e, mpe <0 5w > )+ 3}

and

1 1
A_t = H B >_ji_ = o 1
() {kE{TT,I}s?[é?r] wi(s) = = 2’ 5?[3,)§1W i-1(s) < = 2}

foralljeNand t €0, T].

We also define
N N

Bu(t) = JAT(t) and By(t)=[JA (1)

j=1 k=1

Remark. Bj(t) means that there is a gap between 0 and N of length t.
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Strong mixing condition for MMAF _
Control of probability of appearing of gaps

Proposition

For each T > 0 there exist a constant C = Ct > 0 and a function S87(t) :
(0, T] = (0, 00) depending only on T such that t37(t) — 515 as t — 0+ and
for every N € N

P (Bji(t)) > 1 — Ce r0l(/N-vDv]
for all N e N and t € [0, T].
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Strong mixing condition for MMAF _
Control of probability of appearing of gaps

Proposition

For each T > 0 there exist a constant C = Ct > 0 and a function S87(t) :
1

(0, T] — (0, 00) depending only on T such that t87r(t) — 73 as t — 0+ and

for every N € N
P (BE(t)) > 1 — CePrOlVA-vaV]

for all N e N and t € [0, T].

Lemma

For each k > N the processes
(Xk(t))eepo, 7y and (X‘j(t))te[o,r] coincide on B} (t) and

(X=k(t)),epo, 77 and (X:k(t))tE[O,T] coincide on By (t).
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Sapised e
|dea of control of mixing coefficient

We recall
ai):=  sup [B(ANB) - BAE(B), j>i,

Aemi___Bemoe

where M5 = 0 {Ax+f, a < k < b}, Ax.f = fkkq f(u)N¢(du) and
N:(A) = # (AN {Xk(t), k € Z}).
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Sapised e
|dea of control of mixing coefficient

We recall
o)== sup  [P(ANB)—BAR(B), j>i,
Acon’ oo BEM

where 2 =0 {Ak:f, a< k < b}, Acf = jk 1 u)N¢(du) and
N:(A) = # (AN {Xk(t), k € Z}).

We also define
K
Al f = / fF(u)NE (du)
k—1

for N (A) = # (AN {X,/(t), k € Zzo}) and N (A) = # (AN {X, (), k € Z<_1})

Vitalii Konarovskyi (University of Hamburg a Quantitative CLT for SSEP February 25, 2025




|dea of control of mixing coefficient

Without loss of generality we assume that j € Z> and i = —j.
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|dea of control of mixing coefficient
Without loss of generality we assume that j € Z>¢ and i = —j
For A € DJTLOO and B € DJTJ-*OO there exist Borel measurable sets A C R”<i and

B C R%2/ such that

A= {(Acif)ez., € A}, B={(Actfliez,, € B}.
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|dea of control of mixing coefficient

Without loss of generality we assume that j € Z>¢ and i = —j

For A € E)JT"_oo and B € DJTJ-*OO there exist Borel measurable sets A C R”<i and
B C R%2/ such that

A= {(Acif)ez., € A}, B={(Actfliez,, € B}.

|]P(AHB)—JP’(A)P(B)\:| ({ A eF)i EA} {(Akrf eé})
_P{ Auileng; € AP {(Auihens, € B} |
< [P ({Ainrezs, € A} 0 {(Akinezs,; € B} n B/ (9N B (1)

-P ({(Ak,tf)kez<,- € 74} n B:-) P ({(Ak efke

= +
< i ez, € B} ngf) |
+ Cem BTV

‘]P’ ({(A;tf)kezél, € Z\} n {(A;rf)kezzj € B} N8 n B:,.)

—r({nene, €Ay 0BT F ({Af Nezs, € B} B ) |

4 e ATOVITT,
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Ay . 2
Positivity of o7 (f)
Proposition

Let f € C3(R) be an odd, 1-periodic function. Then an _, (f/(0))? as t — O+

t
In particular, there exists t > 0 such that ¢2(f) > 0 if f/(0) # 0.
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strong mixing condiion for M |
Ay . 2
Positivity of o7 (f)

Proposition

2
Let f € C3(R) be an odd, 1-periodic function. Then LAUNEN (f/(0))? as t — O+

t
In particular, there exists t > 0 such that ¢2(f) > 0 if f/(0) # 0.

Idea of Proof. We define

B k+3
Aiif = / f(u)Ne(du).
K
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strong mixing condiion for M |
Ay . 2
Positivity of o7 (f)

Proposition

2
Let f € C3(R) be an odd, 1-periodic function. Then LAUNEN (f/(0))? as t — O+

t
In particular, there exists t > 0 such that ¢2(f) > 0 if f/(0) # 0.

Idea of Proof. We define

B k+3
Aiif = / f(u)Ne(du).
K

[N

Note that E [/Z\k,tf} = 0 and define

n
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|dea of proof

Thus
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|dea of proof

Thus

As before, we can proof ;
YI(f) = N(0,57),

where

5? = Var Ao’tf +2 Z Cov(;%,tf, Ak,tf)

k=1

—E | (Bo.f)’] + 2 E [AosfAuif]

k=1
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Sepuitperipe e
|dea of proof

Set

Then

1 d?f?
= f? =
0) + 2 dx?

[
+E [((Z\O,tff - f2(wo(t))> HBC]
(

(0) + E [wg ()] + o(t)

(f'(0))°t + o(t).
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Sepuitperipe e
|dea of proof

Set

Then

= 2(0) + %ZXZ (0O)+E [wg(t)] + o(t)

(f'(0))°t + o(t).

[
+E [((Z\O,tff - f2(wo(t))> HBC]
(

Using the lemma about gaps, we get

~ ~ Br(t)
E [Ao,thkytf] S Crei%[(ﬂiﬁ)vq

with t87(t) — 8—\1@ as t — 0+. Thus,

D3[R [AoefAuef]| -0, £ 0+
k=0
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|dea of proof

Consequently,

%af — (F(0))* + @ + % ;]E (Ao« Awef] — (/(0))2.
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