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mpedee |
Simple symmetric exclusion process

On the d-dim discrete torus

TS = {% kel = {0,.4.7n—1}d}CTd:(R/Z)d

we consider a Simple Symmetric Exclusion Process (SSEP)
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State space and generator

Particle configuration n € {0, 1}TZ:

n(x) = 0 < side x is empty
n(x) = 1 < side x is occupied

DO ()é&k() 0 @ © T)(Z)7 zZ#X,Y,
{ Xery (N

) @®@ 0 0O ® © © ® @ n (z) 77()/): z =X,

D00 ® 0O e ® 0O O n(x), z=y,
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State space and generator

Particle configuration n € {0, 1}TZ:

n(x) = 0 < side x is empty
n(x) = 1 < side x is occupied

) 0O @ 0@ 0 @ O n(z), z#x,y,
Xery (N

) @®@ 0 0O ® © © ® @ n (z) 77()/): z =X,

D00 ® 0O e ® 0O O n(x), z=y,

Gn F(n) = = ZZ () = F(n)]  [Kipnis, Landim '99]

j=1 xeT,

SSEP is already parabolically rescaled: space ~ % time ~ n?l
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@e@er | o
Non-equilibrium SSEP

Let 7, t > 0, be a SSEP and pp : T¢ — [0, 1] be an initial profile.
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@e@er | o
Non-equilibrium SSEP

Let 7, t > 0, be a SSEP and pp : T¢ — [0, 1] be an initial profile.
Assume that 1J(x) ~ B(po(x)), x € T¢, are independent.

The process p:(x) := En{(x) solves the discrete stochastic Heat equation

n 1 n
dpi(x) = EA"pt (x)dt
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@e@er | o
Non-equilibrium SSEP

Let 7, t > 0, be a SSEP and pp : T¢ — [0, 1] be an initial profile.
Assume that 1J(x) ~ B(po(x)), x € T¢, are independent.

The process p:(x) := En{(x) solves the discrete stochastic Heat equation

n 1 n
dpi(x) = EA,,pt(x)dt
Thus, )

pli=—5 Z pi(x)ox — pi~dx,

x€TY

where p° := PHE py solves

o0 1 (e o0
dpe = 58pcdt,  po = po.
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Law of large numbers

Theorem [see e.g. in Kipnis, Landim ’99]
Let po : T¢ — [0,1] be an initial density profile and 7§(x) ~ B(po(x)) be inde-
pendent. Then
a1
=3 > me(x)8
x€Td

converges in probability to p°(x)dx, where p° := P py solves

1
dpi” = 58pdt,  po” = po-
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Law of large numbers

Theorem [see e.g. in Kipnis, Landim ’99]
Let po : T¢ — [0,1] be an initial density profile and 7§(x) ~ B(po(x)) be inde-

pendent. Then
|
=3 > me(x)8
x€Td

converges in probability to p°(x)dx, where p° := P py solves

1
dpi” = 58pdt,  po” = po-

d
o (e =T33 [ (1079 — £ (o )

j=1 x€Tp

= 27 (s ) (B, ) + g (<v-ﬁ>)<

2 —_—
8,,J<p| ,Tjﬁ+f]727’]7’jn>+.44,
where 7;1(x) 1= n(x + ¢).
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Secenn)
Density fluctuation field and CLT

We now consider the fluctuations of the SSEP around its mean:

(%) == n? (i (x) — pA(x)) -
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Density fluctuation field and CLT
We now consider the fluctuations of the SSEP around its mean:
n g n n
G (x) = n2 (¢ (x) — pi(x)).

The generator of

&= D Gl

x€Td
can be expanded as follows

~ ~ d ~ —_—
Gr f ((@.0) = %f' (0, 0)) (An, ) + #f” ((2,$)) {|0njepl® , 71 + 71 — 2n77m)

+0 (1/n%+1)
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Density fluctuation field and CLT
We now consider the fluctuations of the SSEP around its mean:
n g n n
G (x) = n2 (¢ (x) — pi(x)).

The generator of
o1
G == v Z Ce(x)0x
x€Td
can be expanded as follows

~ ~ d ~ —_—
Gr f ((@.0) = %f' (0, 0)) (An, ) + #f” ((2,$)) {|0njepl® , 71 + 71 — 2n77m)

+0 (1/n%+1)
Again

{0, &) = (D, E)dt + mart.—d(p, () =

5 (A, (7 )dt + mart.

N =

1 - - s
d(mart.); = 5 <\8n.,,-sa|2 Tyl + 71— 277?Tm£’> dt
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Density fluctuation field and CLT
We now consider the fluctuations of the SSEP around its mean:
n g n n
G (x) = n2 (¢ (x) — pi(x)).

The generator of

&= D Gl

x€Td
can be expanded as follows

s 1 ! e e d 1 d ~ ~ —
Gn' f ((9.0) = 5F ((0.0)) (Bne, ) + #f ((2,$)) {|0njepl® , 71 + 71 — 2n77m)
+0 (1/n%+1)
Again
dlip, ) = 2{Bap, &)t + mart. d{i, ) = 2 (A, G}t + mart.

1 - - - oo 0o 0o
d(mart.)e = 5 <|5n,j90\277m? + it — 277?Tmt”> dt— d(mart.) = (A, p;” — p¢ pr )dt
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Central limit theorem

Theorem 2 [Galves, Kipnis, Spohn; Ravishankar "90]

Let the initial density profile po be smooth. Then the density fluctuation field

a1
G = o Z Ce(x)x

x€Td
converges in D ([0, T],D’) to the generalized Ornstein-Uhlenbeck process that
solves the linear SPDE

a6 = 386 de + V- (/e (1 = p)aws )

with the centered Gaussian initial condition such that

E [(¢5°,#)*] = (po(1 = po)e, )
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Secenn)
Our goal

Our goal: Obtain the rate of convergence of

&= ¢ =007
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Our goal

Our goal: Obtain the rate of convergence of

sup [Ef ((,7)) — Ef ({9, ¢))] = 0
te[0,T]

Difficulty: The tightness argument and the Holley-Stroock theory do not give the rate
of convergence.
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Our goal: Obtain the rate of convergence of

sup |Ef ((¢,C7)) —Ef ((,¢))] =0

te[0,7]

Difficulty: The tightness argument and the Holley-Stroock theory do not give the rate
of convergence.

Quantitative results:

@ [Gess, Wu, Zhang '24]: Higher order fluctuation expansions for nonlinear
SPDEs. (SPDEs defined on the same probability space)
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Our goal

Our goal: Obtain the rate of convergence of

sup_[EF ((¢,C7)) — Ef ((,67))] = 0
te[0,T]

Difficulty: The tightness argument and the Holley-Stroock theory do not give the rate
of convergence.

Quantitative results:

@ [Gess, Wu, Zhang '24]: Higher order fluctuation expansions for nonlinear
SPDEs. (SPDEs defined on the same probability space)

@ [Cornalba, Fischer '23, Djurdjevac, Kremp, Perkowski '24]: Higher order
approximation of Dean-Kawasaki equation
(duality of approach, structure of noise is important)
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Checesy
Our goal

Our goal: Obtain the rate of convergence of

sup_[EF ((¢,C7)) — Ef ((,67))] = 0
te[0,T]

Difficulty: The tightness argument and the Holley-Stroock theory do not give the rate
of convergence.

Quantitative results:

@ [Gess, Wu, Zhang '24]: Higher order fluctuation expansions for nonlinear
SPDEs. (SPDEs defined on the same probability space)

@ [Cornalba, Fischer '23, Djurdjevac, Kremp, Perkowski '24]: Higher order
approximation of Dean-Kawasaki equation
(duality of approach, structure of noise is important)

@ [Chassagneux, Szpruch, Tse '22]: Weak quantitative propagation of chaos
(mean field limit)

@ [Kolokoltsov '10] Central limit theorem for the Smoluchovski coagulation model
(mean field limit, non-local Smoluchowski’s coagulation equation)
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LLN and CLT

Main result
Theorem 3 [Gess, K. '24]
Let

@ the initial density profile po : T¢ — [0, 1] be smooth enough,

@ 7! be SSEP with 7g(x) ~ B(po(x)) and independent,

° pf =Enf, ¢ = n"(n7 — pf)

@ (solves d(° = LA dt + V- (mdwt) with the centered
Gaussian initial condition with E [((5°, ¢)*] = (po(1 — po)¢, )

Then
sup |Ef ((4,¢0) —Ef ({6, ¢7)] < dM Ifllcsll@llcr
t€[0,T]

foralln>1, f € C3(R™) and 7 € (C’(’H‘d))m, where [ is large enough.

Vitalii Konarovskyi (University of Hamburg) Quantitative CLT for SSEP September 10, 2025



LLN and CLT

Main result
Theorem 3 [Gess, K. '24]
Let

@ the initial density profile po : T¢ — [0, 1] be smooth enough,

@ 7! be SSEP with 7g(x) ~ B(po(x)) and independent,

° pf =Enf, ¢ = n"(n7 — pf)

@ (solves d(° = LA dt + V- (mdwt> with the centered
Gaussian initial condition with E [((5°, ¢)*] = (po(1 — po)¢, )

Then
sup_|Ef ((3,¢) —Ef ((5,¢5))] < dM Ifllcsll@llcr
t€[0,T]

foralln>1, f € C3(R™) and 7 € (C’(’H‘d))m, where [ is large enough.
- 7
The rate ;M is optimal: = — lattice discretization error, % — particle approximation

n2 n2

error
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LN and LT |
Main tool

Idea of proof: Compare two (time-homogeneous) Markov processes X;, Y; taking values
in the same state space and Xy = Yy = x using

EF(X:) —EF(Y:) = /t PX (%X —G") PLF(x)ds,

= /t E[(6X - G") PL.F(XS)] ds,

[see e.g. Ethier, Kurtz '86]
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@e@er | o
Splitting of the problem

Recall
EF(X:) — EF(Y:) = /tIE (6% —G") PL.F(X5)] ds,

where Xo = Yy = x.
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@e@er | o
Splitting of the problem

Recall
t
EF(X:) — EF(Y:) = / E[(G%—6") PL.F(X)] ds,
0
where Xo = Yp = x.
We consider the Markov processes:

@ particle means and fluctuation field: (57, f{’)

@ solution to heat equation and generalized OU process (pg°, (7).
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@e@er | o
Splitting of the problem

Recall

t
EF(X:) — EF(Y:) = / E[(G%—6") PL.F(X)] ds,
0
where Xo = Yp = x.
We consider the Markov processes:

@ particle means and fluctuation field: (57, ft")

@ solution to heat equation and generalized OU process (pg°, (7).

The processes starts from different initial conditions!

We will compare:

@ X, :=(p8,¢r) an [comparison of dynamics]
where the generalized OU process started from (jg, (¢);
° and (p°, ¢°) [comparison of initial conditions]

(both are defined by the same equation).
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Comparison of dynamics - |
Generators

We start from the formal computation for cylindrical functions:

F(5,0) == f ((,5), (¢, 0))
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Comparison of dynamics - |
Generators

We start from the formal computation for cylindrical functions:

F(5,0) = f ((¢.5), (#: )
Using Taylor's formula, we get for states p and 5: nd/2(ﬁ —P):

- 1 1 -
Gn' F(5,C) = 5(Bnp, 1) + 502F (Bnp, ()

1 A g
4 28BF (Jonsel? 7 + 7 — 2irm) + O (Ungﬂ) 7

a1 1 .

GoF(p,C) = 531f<A90,p> + 5321‘(&9,0
1 i .

+50f (100" 5 — )
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Comparison of dynamics - |
Generators

We start from the formal computation for cylindrical functions:
F(5,0) = f ((¢.5), (#: )
Using Taylor's formula, we get for states p and 5: nd/2(ﬁ —P):

- 1 1 -
Gn' F(5,C) = 5(Bnp, 1) + 502F (Bnp, ()

1 S a
‘%Z£f<ww¢faﬂﬁ+ﬁ*2vﬁw4%O(Un?ﬂ),

- 1 1 -
GOF(5.0) = S0nf (D, D) + 5 0uF (B, )

1 P
+50f (100" 5 — )
Thus

(627 = G°) F(p.0) = %81f<Ancp — Do, p) + %82f<An€0 - 2¢.0)

1 —_ 1
+ 305f [(10ns0” 731 + 71 — 2075m) — 2|0y, 5 = )] + O ( i
n2
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Comparison of dynamics - |
The difficulties

(|0nj0l* 731 + 7 = 207m) = 2{|030l* , 5 = 7°)

@ 3 is not well-defined for empirical distribution.
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@ U is not (Frechet) differentiable at j because of the term /p(1 — p) in the SPDE
for the OU process.
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@ Generators have to be compared on U := P2Uf ((),-), (v, -)), that is not
cylindrical function.

@ U is not (Frechet) differentiable at j because of the term /p(1 — p) in the SPDE
for the OU process.

Idea: Note that p° € H, and (° € H_,.

Vitalii Konarovskyi (University of Hamburg) Quantitative CLT for SSEP September 10, 2025



Comparison of dynamics - |
The difficulties

{|0njel? 731 + 7 — 2nmm) — 2 (|80, 5 — 7°)

@ 3 is not well-defined for empirical distribution.
° <‘(‘)”J*f9|2 d ’/?jr/> - <‘HJ79‘2 ’ ﬁ2>?

@ Generators have to be compared on U := P2Uf ((),-), (v, -)), that is not
cylindrical function.

@ U is not (Frechet) differentiable at j because of the term /p(1 — p) in the SPDE
for the OU process.

Idea: Note that p° € H, and (° € H_,.

We need different lifting of the particle system to the Sobolev space compatible with its
differential structure.
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Discrete and continuous Fourier transform

Replace j = & > erd P(X)0x and = 4 > erd C(x)dx by a smooth interpolation.
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Discrete and continuous Fourier transform
Replace j = & > erd P(X)0x and = 4 > erd C(x)dx by a smooth interpolation.

@ Let L»(T9) be the Hilbert space of all functions on T¢ with inner product

(1. p2)n = 5 3 pr()pa(x)

x€Td
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Discrete and continuous Fourier transform
Replace j = & > erd P(X)0x and = 4 > erd C(x)dx by a smooth interpolation.

@ Let L»(T9) be the Hilbert space of all functions on T¢ with inner product

(1. p2)n = 5 3 pr()pa(x)

x€Td

@ L[»(T?) be the usual Lo-space of function on T% with

(g1,82) = /d g1(x)g2(x)dx.
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Comparison of dynamics - |
Discrete and continuous Fourier transform
Replace j = & > erd P(X)0x and = 4 > erd C(x)dx by a smooth interpolation.

@ Let L»(T9) be the Hilbert space of all functions on T¢ with inner product

(p1,p2)n = — Z p1(x)p2(x)

XGTd

@ L[»(T?) be the usual Lo-space of function on T% with
o) = [ (e
Td

@ o (x) = ?mikx | ezd xeT! > T
— basis vectors on L»(T¢) and L»(T¢), and
— eigenvectors for discrete and continuous diff. operators

September 10, 2025
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Comparison of dynamics - |
Discrete and continuous Fourier transform
Replace j = & > erd P(X)0x and = 4 > erd C(x)dx by a smooth interpolation.

@ Let L»(T9) be the Hilbert space of all functions on T¢ with inner product

(p1,p2)n = — Z p1(x)p2(x)

XGTd

@ L[»(T?) be the usual Lo-space of function on T% with
o) = [ (e

Td

@ o (x) = ?mikx | ezd xeT! > T
— basis vectors on L»(T¢) and L»(T¢), and
— eigenvectors for discrete and continuous diff. operators

Lo(T5) 5 p = Z(p, Skhnsk on T, Ly(T9) > g = Z(& sk)sk on T¢

kezd kezd

September 10, 2025
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New (smooth) lifting of discrete space

For functions p € L2(T¢) and ¢ € Lo(T?) define

exapi= Y (pisdase on T prop:= > (p,c)sk on T

kezg kezd
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Comparison of ¢ynamic= . |
New (smooth) lifting of discrete space

For functions p € L2(T¢) and ¢ € Lo(T?) define

exapi= Y (pisdase on T prop:= > (p,c)sk on T

kezg kezd

Basic properties of ex,f and pr,g

@ ex,p = pon T? and ex,p € C=(T9)
@ pr, ¢ is well defined on T¢ for each ¢ € Hy, J € R.

@ (p1,p2)n = (€Xnp1,€xnp2) and (p,Pr,g)n = (exnp, &)

lexn = @llry < SN iarg

@ |[jpr,g —glln, < :ligllm,
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Comparison of generators for smooth interpolations

We replace
prexap=ip, (v exal=iC

in particular B
(p,exnC) = (Pry@, C)n = (Pr,e; C)
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Crztpednsts,
Comparison of generators for smooth interpolations

We replace

ﬁwexnp = /’)\7 5v~>exn§ :Zé
in particular B
(¢, exnC) = (pPry, O)n = (Pr,9; ()

In generator computations:

<A"prn903 5> = <A"prn903 C)" = <eX"A"prngp7 é)
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Crztpednsts,
Comparison of generators for smooth interpolations

We replace

ﬁwexnp = /’)\7 5v~>exn§ :Zé
in particular B
(¢, exnC) = (pPry, O)n = (Pr,9; ()

In generator computations:
<A"prn903 5> = <A"prn903 C)" = <eX"A"prn907 é)
FF 20U\ fra &y _ 1 Moo, L ~
(9" = G%°) F(p, Q) = 501 (exnlinprytp — A, p) + 5 0aF (exnBapryp — Dep, )
1 A , A A
+ Z@gf KOX,, |0 jpr @, T+ H — 2()X,,(I]’Tj’f))> -2 <\(9j¢\2 D — /)2>]

1
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Overcoming of problems

0 |(exnlspr,p — A, Q)| < ol lICIH,
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Overcoming of problems

© |(exalnpr,p — 8p, {)| < HlplalIClIn,

@ The term j° is well defined. Moreover,
1 1
TN = pTip + —57 (pTiC + CTip) + 5 C7iC
and

, o 1 1 “
exa(nn) — P° = exa(prip) = 1 + — (exa(p7iC) + exa(CTip)) + — exa(CT5C)
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© |(exalnpr,p — 8p, {)| < HlplalIClIn,

@ The term j° is well defined. Moreover,
1 1
TN = pTip + —57 (pTiC + CTip) + 5 C7iC
and

, o 1 1
exa(nn) — P° = exa(prip) = 1 + — (exa(p7iC) + exa(CTip)) + — exa(CT5C)

© [lexa(pm Ol < lIAllcslICHm_-
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Overcoming of problems

|(exnnpr,0 — 8, O)| < 2@l hy,lICNIH_,

@ The term j° is well defined. Moreover,
1 1
TN = pTip + —57 (pTiC + CTip) + 5 C7iC
and

, o 1 1
exa(nn) — P° = exa(prip) = 1 + — (exa(p7iC) + exa(CTip)) + — exa(CT5C)

° [lexa(pm Ol < ANl ICHH,-
The term E ( Lex, (¢775¢7), 03f(. . .)exn |On pr,p|*) can be controlled via

4

BT 00) — ) <

i=1

1
n

Vitalii Konarovskyi (University of Hamburg) Quantitative CLT for SSEP September 10, 2025



Overcoming of problems

|(exnnpr,0 — 8, O)| < 2@l hy,lICNIH_,

@ The term j° is well defined. Moreover,
1 1
TN = pTip + —57 (pTiC + CTip) + 5 C7iC
and

, o 1 1
exa(nn) — P° = exa(prip) = 1 + — (exa(p7iC) + exa(CTip)) + — exa(CT5C)

llexn(pi Ol < [IAllco 1€ A, -
The term E ( Lex, (¢775¢7), 03f(. . .)exn |On pr,p|*) can be controlled via

4

BT 00) — ) <

i=1

1
n

@ All computations and estimates for (ng - QOU) F(p, f) can be easily transferred
to the case F € C™*(H, x H_)).
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Differentiability of PPUF(p, ()
A solution to

1
dpe® = iAPtocdt

o0 1 o0
de = 3¢+ V- (VoE(L— p)avk )

exists for all p§° € L»(T%;[0,1]) and (§° € H—; for | > g +1
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Differentiability of PPUF(p, ()
A solution to

1
dpe® = iAPtocdt

o) 1 oo
aG = Lacrar+ v (Vor - prawe)
exists for all p§° € L»(T%;[0,1]) and (§° € H—; for | > g +1
For F (S C(HJ X H,/) (eg F= f(<¢»>7 <¢7 >)) define Ut(pgc~<éx)) =EF (p?Q'C?Q)
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Comparison of cynamics |
Differentiability of PPUF(p, ()
A solution to

1
dpe® = EAP?Cdt

oo 1 oo
aG = Lacrar+ v (Vor - prawe)
exists for all p§° € L2(T%;[0,1]) and (5° € H- for | > g +1.
For F € C(Hy x H-y) (e.g. F=f({th,),{p,"))) define U:(p5°, (5”) := EF (p°, ()

Proposition [Gess, K. '24]

Let /> 2+1and F € C7*(H-/). Then Ue(ps°,(5°) = EF (¢°) € Cp3(Hyx H-))
for J > g. Moreover,

DyUL(", G571 = SE [D*F(GF) - DVi(s®) [4]

with
Ve(p5° ), ¥) = Cov ({9, %), (¥, ¢))
1 [ - =
2/ (VPE o VPEY, p° (1 - p°)) ds
0
Vitalii Konarovskyi (University of Hamburg) Quantitative CLT for SSEP
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Berry-Esseen bound for the initial fluctuations

@ It remains only to compare
EF (o™, 6") = EF (0%, ¢7°) = PEYF(55, &) — POV F(po, Go)

where pf° started from the initial profile po and (; started from the centered
Gaussian distribution with

E(Co, )> = (po(1 — po), ).
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Berry-Esseen bound for the initial fluctuations

@ It remains only to compare
EF (o™, 6") = EF (0%, ¢7°) = PEYF(55, &) — POV F(po, Go)

where pf° started from the initial profile po and (; started from the centered
Gaussian distribution with

E(Co, )> = (po(1 — po), ).

@ It is enough to compare only
EG(exnly) — EG(pr,o),
where G € C*(H_,), where
exn(y = Z<<€»Ck>n§k, pr,Co = Z(Co,<k><k

kezg kezd
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Berry-Esseen bound for the initial fluctuations

@ It remains only to compare
EF (o™, 6") = EF (0%, ¢7°) = PEYF(55, &) — POV F(po, Go)

where pf° started from the initial profile po and (; started from the centered
Gaussian distribution with

E(¢o, )* = (po(1 — po)ep, 0)-
@ It is enough to compare only
EG(exnly) — EG(pr,o),
where G € C*(H_,), where

exnlg = Z(Cé’,w)m, pr,Co = Z<<O,<k>§k

kezg kezd

@ Is enough to compare for g € C3 (RZZ)

Eg (((1 + ‘k|2)—//2<<‘87§k>n)kezg) —Eg (((1 + \k|2)7//2<§0,<k>)kezg> .
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Berry-Esseen bound for the initial fluctuations

@ It remains only to compare
EF (o™, 6") = EF (0%, ¢7°) = PEYF(55, &) — POV F(po, Go)

where pf° started from the initial profile po and (; started from the centered
Gaussian distribution with

E(¢o, )* = (po(1 — po)ep, 0)-
@ It is enough to compare only
EG(exnly) — EG(pr,o),
where G € C*(H_,), where

exnlg = Z(Cé’,w)m, pr,Co = Z<<O,<k>§k

kezd kezd
3 (mzd
@ Is enough to compare for g € C° [ R

Eg (((1 + ‘k|2)—//2<<‘87§k>n)kezg) —Eg (((1 + \k|2)7//2<§0,<k>)kezg> .

@ Apply multidimensional Berry-Essen theorem [e.g., Meckes '09]
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