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Abstract

The large deviations theory is one of the key techniques of modern probability. It concerns
with the study of probabilities of rare events and its estimates is the crucial tool required to handle
many questions in statistical mechanics, engineering, applied probability, statistics etc. The course
is build as the first look at the theory and is oriented on master and PhD students.
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1 Introduction and some examples

1.1 Introduction

We start from the considering of a coin-tossing experiment. Let us assume that we toss a fair coin.
The law of large numbers says us that the frequency of occurrence of “heads” becomes close to % as the

number of trials increases to infinity. In other words, if X1, X»,... are independent random variables
taking values 0 and 1 with probabilities 3, i.e. P {X = 0} =P {X; = 1} = 3, then we know that for
the empirical mean %Sn = w

1 1
Sn—‘>e}%01, n — 00,
n 2

{

or more strongly
1o, o1 2
n a.s.%, n — oo.
n 2

We are going to focus on the probabilities P {}%Sn — %} > 5}. We see that this events becomes more
unlikely for large n and their probabilities decay to 0. During the course, we will work with such kind
of unlike events and will try to understand the rate of their decay to zero. The knowledge of decay of

Laccording to the weak law of large numbers
2according to the strong law of large numbers
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probabilities of such unlike events has many applications in insurance, information theory, statistical
mechanics etc. The aim of the course is to give an introduction to one of the key technique of the
modern probability which is called the large deviation theory.

Before to investigate the rate of decay of the probabilities P {‘%Sn — %‘ > 8}, we consider an
example of other random variable where computations are much more simpler.

Let &1,&9, ... be independent identically distribyted random variables. We also assume that

Efl =ue Rv
Varé, = o2 > 0,

and denote S, = &1 + - - - + &,. Then the weak law of large numbers says that
1
—S, — p in probability, as n — 400,
n

that is, for all € > 0 one has P {‘%Sn — ,u‘ > 5} — 0 as n — 4o00. This convergence simply follows
from Chebyshev’s inequality. Indeed,

1 1 (1 2 1 o2
Po|l=Sn—p|2er < 5E (=S, —p) =5 Var| =5, ) =—5 —0, n— +oo. (1.1)
n € n € n ne
Estimate (1.1) shows that the rate of convergence must be at least %, but this estimate is too rough.
Later we will see that those probabilities decay exponentially fast. Let us demonstrate it on a particular
example.

Example 1.1. Let £1,&,... be independent normal distributed random variables with mean p = 0
and variance o = 1 (shortly & ~ N(0,1)). Then the random variable S,, has the normal distribution
with mean 0 and variance n. This implies ﬁSn ~ N(0,1).

Now we can consider for z > 0

1 1 1 oo y2 1 nz2
]P) 7571, 2 x == ]P) 7811 2 ryvn = / C_Td ~ 76_?7 n — _1_007
{n } {\/ﬁ \F} V21 Juym Y V2ray/n

by Exercise 1.3 below. Thus, we have for z > 0

1 1 1 1 na?
lim —InP {Sn > :E} = lim —In—e™ 2
n—oo N n n—oo n \/27-(1»\/%

1 2
= — lim —InV2rzy/n — lim r_ T

n—oo M n—oo 2 2

due to Exercise 1.4 3).
Remark 1.2. By symmetry, one can show that
1 1 2
lim —InP {S’n < :B} N
n—oo N n 2

for all x < 0. Indeed,

2
lim l111]P> {1Sn < x} = lim llnIP> {—1Sn > —:c} = lim llnP {15’n > —x} = —( z)
n n

n—oo n n—oo N, n—oo n n

because —&, ~ N(0,1) for k£ > 1.
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Exercise 1.3. Show that

22

e 2, x— +00.

SER

+oo 42
/ e 2dy~
X

Exercise 1.4. Let (an)n,>1 and (by)n>1 be two sequences of positive real numbers. We say that they
are logarithmically equivalent and write a,, ~ b, if

1
lim — (Ina, —Inb,) =0.
n—oo n

1. Show that ay, = by, iff b, = a,e’™.

2. Show that a,, ~ b, implies a,, ~ b,, and that the inverse implication is not correct.

3. Show that a, + b, ~ max{ay,by}.
Exercise 1.5. Let &£1,&2,... be independent normal distributed random variables with mean y and
variance 2. Let also S, = & + - -+ + &,. Compute lim,, 0 %lnP {%Sn > 1:} for x > p.
1.2 Coin-tossing

In this section, we come back to the coin-tossing experiment and compute the decay of the probability
P {%Sn > x} Let, us before, X1, Xo,... be independent random variables taking values 0 and 1 with
probabilities % and S, = X7 + -+ X,, denote their partial sum. We will show that

lim * P {7115” > x} — _I(2) (1.2)

n—oo N

for all x > %, where I is some function of x.
We first note that for x > 1

lim l1an> {lsn > x} =—003
n

n—oo M

Next, for x € B, 1] we observe that

1 1 k
Sy S . > zn} = =k} =5
u»{nsn_x} PS> am)= Y P(Si=h =5 3 Ch

k>zn k>zn

where Ck = k!(;:i - Then we can estimate

— < > < — . .
o [hax Cp <P{S,>zn} < gn [ax Cy (1.3)

Note that the maximum is attained at k = [zn], the smallest integer > xn, because x > % We denote

[ := |zn]. Using Stirling’s formula

n

n! = n"e "\2mn (1 +0 <1>> :

3we always assume that In0 = —oo
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we have
1 .1
lim —Inmax C¥ = lim flnC = lim — (Inn! —Inl! —In(n —1)!)
n—oo N k>xn n—oo N n—oo N
l l —1 —1
= lim (lnn—l—lnl—i——n ln(n—l)—i—n)
n—00 n n n

l l n—1

= lim lnn—flnl—

H,o<n n
(o

(o))

: n_ll n_l>:xlnx(1aj)ln(1x),

l
— n
non n

because Lmj — x as n — +o0o. This together with estimate (1.3) implies

1 1
lim —InP {Sn > $} =—In2—zlnzr—(1—2)In(l —2)
n

n—oo n

for all x € [%, 1].
So, we can take

I(2) In2+xlnz+ (1—2)In(l —z) ifze]0,1], (1.4)
T) = .
400 otherwise.
+00
— —

4
Remark 1.6. Using the symmetry, we have that
lim 2P dLls, <2l = 1) (1.5)
Jim -~ In SSh S = x .
for all x < % Indeed,
o1 1
lim —InP {Sn < ZE} = lim flnIP’ { — fS > 1—x}
n—oo n n n—oon n
1 1-X e+ (1= X,
n—oo n n

because X and 1 — X}, have the same distribution.

“The picture was taken from [dHOO]
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Theorem 1.7. Let £1,&, ... be independent Bernoulli distributed random variables with parameter
p for some p € (0,1), that is, P{{ =1} = p and P{& =0} = 1 —p for all k > 1. Let also
Sn=E+-+&,. Then forallx>p
o1 1
lim —InP <=5, >z =—I(z),
n—oo N n

where

1_ .
I(x) = eln?+(1-z)ln= ifzel0,1],
+00 otherwise.

Exercise 1.8. Prove Theorem 1.7.

Exercise 1.9. Using (1.2) and (1.5) show that
>or i
n=1

for all € > 0. Conclude that % — % a.s. as n — oo (strong low of large numbers).
(Hint: Use the Borel-Cantelly lemma to show the convergence with probability 1)

— —=| > <00,
n 2

2 Cramer’s theorem

2.1 Comulant generating function

The aim of this section is to obtain an analog of Theorem 1.7 for any sequeness of independent
identically distributed random variables. In order to understand the form of the rate function I, we
will make the following computations, trying to obtain the upper bound for P {%Sn > x}

Let &1,&9,... be independent identically distributed random variables with mean i € R. Let also
Sn=&+ - +&,. Wefixx > pand A > 0 and use Chebyshev’s inequality in order to estimate the
following probability

P{TllSnZCC}—]P’{Snan}_IP’{e)‘S”Ze’\m}S ! E e = ! ﬁEe)‘g’“—e)\lgm(Ee)‘gl)n.

e rn e rn
k=1
Thus, we have
— 1 — 1 —Arn w1 AE "
lim —InP {S, >2n} < lim —Ine + lim —1In (Ee 1) = -z + p(A), (2.1)
n—oo n n—oo n n—oo n

where p(\) := InE e*1. We also remark that —\z + ¢()\) > 0 for all A < 0, according to Exercise 2.5
below. Therefore, the inequality

— 1
nl;ngo - InP {S, > azn} < —Az+ ()
trivially holds for every A < 0. Taking infimum over all A € R, we obtain

1
fm —InP {S, > zn} < inf {-\ A} = —sup {Az — p(A)}.
A =P {Sy > an} < inf {-Az + (M)} iléﬁ{x e(N)}

Later we will see that the function sup {\z — ¢(A)} plays an important role, namely, it is exactly
AER
the rate function 1.
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Definition 2.1. Let £ be a random variable on R. The function

e(\) :=InEe*, XeR,
where the infinite values are allowed, is called the logarithmic moment generating function or
comulant generating function associated with &.

Example 2.2. We compute the comulant generating function associated with Bernoulli distributed
random variables £ with parameter p = 3. So, since P {¢ = 1} = P {¢ = 0} = 1, we obtain

1 1
©(\) =InEe* =1n (e’\'12 +e)"02> =—In2+1In (e)‘ + 1> , AeR

Example 2.3. In this example, we will compute the comulant generating function associated with
exponentially distributed random variable £ with rate v. We recall that the density of £ is given by

the following formula
ve 7T if x >0,
pf(x)_{o if 2 < 0.
So,

PN = ln/ eXtyer dy = 111/ yem 0 Nedy = n [ - _e=(-Ne
0 0 v—=A

if A\ <. For A >~ trivially ¢(\) = 4+00. Thus,

Iny—In(y—XA) if A <n,
p(A) = .
+o00 if A>n.

Exercise 2.4. Show that the function ¢ is convex®.

Solution. In order to show the convexity of ¢, we will use Holder’s inequality.® We take A\;, Ao € R

and t € (0,1). Then for p = % and ¢ = ﬁ
t 1—t

ot + (1 —t)A2) = InE etAlge(l_t))‘Qg} <In <[E 6)‘15] [E 6)‘25] )

=tInEeMé 4 (1 —t)InE e = tp(A) + (1 —t)p(Xa).

Exercise 2.5. Assume that a random variable £ has a finite first moment E£ = p and let ¢ be the
comulant generating function associated with £. Show that for every z > pand all A <0

Az — (A) <0.
(Hint: Use Jensen’s inequality.”)

Exercise 2.6. Let ¢ be a comulant generating function associated with £&. Show that the function ¢
is differentiable in the interior of the domain Dy, := {x € R : ¢(x) < oo}. In particular, show that
Y (0)=E¢if0 e Df';.

(Hint: To show the differentiability of ¢, it is enough to show that Ee*¢, A € R, is differentiable. For the differen-
tiability of the latter function, use the definition of the limit, the dominated convergence theorem® and the fact that the

ef?—1

function

= [ e*"dx increases in € > 0 for each a > 0.)

A function f : R — (—o0, +00] is convex if for all 1,22 € R and ¢ € (0,1), f(tx1 + (1 —t)z2) < tf(x1) + (1 — 1) f(z2)
1

Let p,q € (1, +00), % + % =1 and &, n be random variables. Then E (£n) < (E&P)? (Enq)%.

"For any random variable ¢ with a finite first moment and a convex function f : R — R, one has f(E¢) < E f(¢).

8For the dominated convergence theorem see [Kal02, Theorem 1.21]
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2.2 Fenchel-Legendre transform

In this section, we discuss the Fenchel-Legendre transform of a convex function that apeared in the
previous secton. Let f: R — (—o00,+00] be a convex function.

Definition 2.7. The function
f(y) :==sup{yx — f(z)}

zeR

is called the Fenchel-Legendre transform of f.

slope 1 slope z,
2f(@)
xoyo
f* (o)
f(zo)
T . g Y
9
Fenchel-Legendre transformation: definition
2 S (@) NN
P > y
10

Fenchel-Legendre transformation of a function f

Exercise 2.8. Show that the Fenchel-Legendre transform of a convex function f is also convex.
(Hint: Show first that the supremum of convex functions is a convex function. Then note that the function Az —¢(\)

is convex in the variable x)

Exercise 2.9. Compute the Fenchel-Legendre transform of the comulant generating function associ-
ated with the Bernoulli distribution with p = %

Solution. Let £ be a Bernoulli distributed random variable with parameter p = %, ie. P{{&=1} =
P {¢ =0} = 1. We first write its comulant generating function:

p(A)=—In2+1In (1+e>‘)

Tt turns out that the Fenchel-Legendre transform of f* coincides with f (see e.g. [Swal2, Proposition 2.3]). The
picture was taken from [Swal2].
9The picture was taken from [Swal2].
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(see Example 2.2). In order to compute the Fenchel-Legendre transform of ¢, we have to find the
supremum of the function

g(N) ::)\x—go()\):)\a;+ln2—ln<1—|—e)‘>, A eR,

for every x € R. So, we fix x € R and find

o
g\ = T 1lter
Hence T
)\Zlnl—x if € (0,1)

is a local maximum. Due to the convexity of ¢, this point is also the global maximum. Consequently,

X X
* = Az — N} =zl In2—1In(1
¢'(@) = sup (e — (V) =t 22—t (14 )

=zlnzr—zIn(l—2z)+m2+In(l—2)=mm2+zhz+(1—-2)In(l—2z), zec(0,1).

If x <0orax>1then ¢*(z) = +oo. For x = 0 and = 1 one can check that ¢*(z) =In2.
Exercise 2.10. Show that the function ¢* from the previous exercise equals +oo for z € (—o0,0) U
(1,+00) and In2 for x € {0,1}.

Compering the Fenchel-Legendre transformation ¢* of the comulant generating function associated
with the Bernoulli distribution £ and the rate function I given by (1.4), we can see that thay coinside.

Exercise 2.11. a) Show that the Fenchel-Legendre transform of the comulant generating function
associated with N (0, 1) coincides with %2

b) Show that the Fenchel-Legendre transform of the comulant generating function associated with
Bernoulli distribution with paramiter p € (0, 1) coincides with the function I from Theorem 1.7.

¢) Find the Fenchel-Legendre transform of the comulant generating function associated with expo-
nential distribution.

Exercise 2.12. Suppose that ¢* is the Fenchel-Legendre transform of the cumulant generating func-
tion of a random variable £ with E & = u. Show that

(i) ¢*(z) > 0 for all z € R. (Hint: Use the fact that ¢(0) = 0)
(ii) ¢*(u) = 0. (Hint: Use (i) and Jensen’s inequality to show that ¢ (u) < 0)

(iii) ¢* increases on [u,00) and decreases on (—oo, u]. (Hint: Use the convexity of ¢* (see Exercise 2.8) and
(i)
(iv) ¢*(x) > 0 for all x # p. (Hint: Get a contradiction with the assumption ¢*(x) = 0 for z > p)

(v) Show that ¢* strictly increases on {x > p: ¢*(x) < oo} and strictly decreases on {x < p :
©*(x) < 0o}, (Hint: Use (iv) and the convexity of ¢*)
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2.3 Cramer’s theorem
The goal of this section is to prove the Cramer’s theorem.

Theorem 2.13 (Cramer). Let &1,&2,... be independent identically distributed random variables with
mean pu € R and comulant generating function @. Let also S, =& + -+ &,. Then, for every x >

n—oo N

1 1
lim —InP {Sn > :1:} = —p*(x),
n
where ©* is the Fenchel-Legendre transform of ¢.

We will need the following lemma for the proof of Cramer’s theorem.

Lemma 2.14. Let ¢ be the comulant generating function associated with a random variable £. Let
also ¢ takes finite values on R. Then ¢ is continuously differentiable!’ on R, ¢'(0) = E¢ and
lim ¢'(A\) = ess sup&.12 (2.2)

A——+o00

Proof. Using the dominated convergence theorem, similarly as in the solution of Exercise 2.6, one can
check that

%EeAg —E&e, NeR.

Therefore,
E [¢eX]
EeXé
In particular, this trivially implies the equality ¢'(0) = E&.
Let § := ess sup&. For simplicity of proof, we will assume that 8 < co. If P {{ = §} > 0, then the
limit of ¢'(\) can be simply computed as follows

o'(\) = , AeR

E [¢e* “ME [geX E [ce=2B-9] Eel,,
lim ¢'(\) = lim M = lim & — 1 [ge ] _ Elie—p)
Ao Artoo EeM T a5t e MEM a5t Ee A9 T Elg

=3, (2.3)

by the dominated convergence theorem and the fact that e *(#=¢) — Ie—py a.s. as A — +oo.

If P {£ =8} = 0, then the proof is more technical. Let B < B. Then P{¢ > B} > 0, by the
definition of 5. We now estimate

E [ge—/\(ﬁ—é)} ; E [BH{QB}@—/\(B—E)]
m

lim ¢'(A) = lim

A +oo Aotoo Ee M-8 T\ Iiw E e~ MB-¢) ’
due to .
- o= AB=E
B [5H{§<ﬂ}e ( )}
lim - =0.
A—+o00 E e—MB=E)
Since

o= MB—E
lim E [H{E<6}€ ( )}
A too E e—XB-€)

One can even prove that ¢ is infinitely differentiable function on R.

2ess sup £ is defined as inf{ sup &(w): VA P {A} = 0}.
weA®C

10
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as well, we get

o . E {ewﬁlo} i
R
Making B 18, we get the lower bound
lim ¢'(A) >

The upper bound
lim ¢'(\) <8

A—+400

immediately follows from the estimate £ < 3 a.s. O

Exercise 2.15. Prove the equality (2.2) in Lemma 2.14 in the case ess sup§ = +oo.

Exercise 2.16. Let ©* be the Fenchel-Legendre transform of the comulant generating function of a
random variable £. Let also 8 = ess sup & < oco. Show that ¢*(z) = 400 for all x > .
Hint: Show that limx_ 4o (Az — p(N)) = H00.

Proof of Theorem 2.13. The upper bound

1 1 .
nh_}n;oﬁlnIF’ {nSn > x} < —p*(x)
was proved at the beginning of Section 2.1 (see inequality (2.1)).

We next prove the lower bound. For simplicity, we will assume that the comulant generating
function ¢ takes finite values on R. The case where p(\) = +oo for some A € R can be found in [Kal02,
p. 541]. By Lemma 2.14, the function ¢ is continuously differentiable on R with ¢'(0) = E&; = u and
lim)y o0 ¢'(A) = ess sup& =: 5. Since ¢’ is continuous, for each y € (u, 3) we can choose A9 > 0 such
that ¢’(A\g) = y, by the intermediate value theorem.

Let 51, 52,. .. be independent identically distributed random variables with distribution

P {g € B} ) [e’\ogi]l{&eB}} , BeB(R).
Then the comulant generating function ©¢, associated with §~Z is defined by
pg, (A) = InE e = 1In (e_so()‘O)E [e/\ogiek&D = Ine 00 L InE P0G — (X + Ag) — p(Ao).
Therefore, E&; = cp’éi (0) = ¢'(Ao) = y. By the law of large numbers, we can conclude that for every

e>0 )
]P’{~

Sn—y‘<a}—>1, n — 00,

n

where S“n :§~1+---+£n.
On the other side,

1 -
2§ _ — o—1p(Ao) Ao(§1+++én) — o—n(Xo) AoSn
B |78 o] <cf memtom Wjasmsf<et] =€ OB [T e

< ¢ 19(0) on(ye) p {‘1571 — y‘ < 5} — o(yte)—e (X)) p {'1Sn - y' < 5} .
o n

11
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Consequently,
im L 1 im Ln |e—nCotre—e0ap || Lg
lim —InP< (=S, —y|<ep > lim —In e ol PLROIP L |—S, —y| <e
n—soo 1 n n—oo 1 n
1 1~
=—(Ao(y+e)—pN))+ lim —InP < |=5, -yl <e
n—oo 1 n
= —(Qo(y+¢) —¢(ho)) = —sup{Ay +¢) — (N} = —¢"(y +¢).

AER

Now, fixing any = € [u, 8) and putting y := x + &, we get for small enough ¢ > 0
.1 1 .1 1 .
lim —InP =S, >xp> lim —InP < |=S, —y|<ep>—¢"(z+ 2e).
n—oo 1 n n—oo N n

Since ¢* is continuous on [u, 3) by convexity, we may pass to the limit as ¢ — 0+. Therefore, we
obtain the lower bound.

If > B, then ¢*(x) = +00 according to Exercise 2.16. Therefore, the lower bound holds.

For the case x = 8 < 0o, we have that

n—oo T n—00

— lim ~InP {& = B}" = InP {&, = 8}

n—oo
We also compute the right hand side for the lower bound:
©*(B) =sup {8 — p(N\)} Exe. 2.5 sup {A\S — ¢(A)} = sup {— InEe M — lnIEe/\&}
AeR A>0 A>0
— f{] E —A(ﬁ—sn}:l P& — B)
inf {InEe nP {& = B}
For the last equality in the previous computations we have used the dominated convergence theorem

and the fact that e A 8-8) > Ie,—py, A >0, and e MB—E&) Ife,—py a.s. as A — +o0. This completes
the proof of the theorem. O

Remark 2.17. Under the assumptions of Theorem 2.13, for every = < p

lim llnIP’ {1Sn < :IJ} = —p*(x). (2.4)
n

n—oo N

In order to obtain this equality, one needs to apply Cramer’s Theorem 2.13 to the family of random
variables 2yt — &1, 200 — &, ... and show that @3, (2n —2) = ¢*(2), z € R.

Exercise 2.18. Check equality (2.4).

Exercise 2.19. Let &1,&,... be independent identically distributed random variables. Consider a
non-negative Borel measurable function f : R — [0, 00) such that E f(&1) € (0,00). Define the family
of independent random variables 71,172, ... with distribution

P {n € BY = S [[(€)lcen], B € B®),

where C' = E f(&;) is the normalizing constant.

12
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1. Find the distribution of 7, if £ has the exponential distribution with parameter A > 0, and
f(z) =e " x € R, where & > —\ is a positive constants.

2. Show that for every n € N and B; € B(R)

P{nm €Bi,....,n € Bp} = %E [f&1) . &) e eB,. gncBal] -

3. Show that )
Eg(nlvvnn) = aE [f(fl) f(gn)g(gla . 7£n)}7

for any Borel measurable function g : R — R.

3 Definition of large deviation principle

3.1 Large deviations for Gaussian vectors

We recall that, in previous sections, we have investigated the decay of the probability P {%Sn > :L‘},
where S, = £1+---+&, and &, k € N, ware independent identically distributed random variables in R.
We start this section from some example of random variables in higher dimension and investigate the
decay of similar probabilities. This will lead us to the general concept of large deviation principle in the
next section. We note that the case { ~ N(0,1) was very easy for computations (see Example 1.1).
So similarly, we take independent R%-valued random element (or random vector) n; = (nlil), A n,gd)),
k > 1, with standard Gaussian distributions'®. We will study the decay of the probability

IP’{iSneA}_P{\}ﬁneA}_P{ne\/ﬁA},

where A is a subset of R%, S,, =7, + - -- 4+ 7, and 7 has a standard Gaussian distribution.
The upper bound. We recall that the density of ﬁn is given by the formula

nd nllal2
((\/\/2;73)d62|’ x=(x1,...,2q) e RY,

where ||z||? = 2% 4 - - + 2. Now, we can estimate

(z) =

Pk

Elln}? :mlln T = lim lln

—1 A d
n—oo n \/ﬁn < n—oo n AP% (x) n—oo N (, /27r)d
— 1 n|z||? — 1 nlyl?
+ lim ln/ e 2 dr< lim ln/ <supe 2 )dx
n—oo n A n—oo N A \yeAa
—n inf I(x)

— 1 —n inf 12l — 1 |
=lim —In[e =4 * |A4]| < lim —In|A|+ lim —Ine =<4
n—00 N n—oo n

— —inf I(z) < — inf I
inf (z) < inf (z),

1377]8) ~ N(0,1),i=1,...,d, and are independent

13
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where I(z) := %, A is the closure of A and |A| denotes the Lebesgue measure of A.
The lower bound. In order to obtain the lower bound, we assume that the interior A° of A is
non-empty and fix zg € A°. Let B,(z0) = {z € R?: ||z — 20|l <7} C A denotes the ball in R? with

center zg and radius r for small enough r > 0. We estimate

1 1 1 1 d
lim —InP {nGA}: lim ln/pn(x)dxz lim —lnﬂ
n—oo 1 \/ﬁ n—oo 1 AV n—o0 N (, /27Tn)d

1 nlle|? 1 n(llzoll+llz—zql)?
—l—limln/ e 2 d:czlimln/ e~ oy dx
n—oo 1 B (z0) n—oo N By (z0)

1 n(|lzgll+r)* 1 n(|lzg||+r)*
> lim ln/ e gy = lim —Ilne™ R | B, (x0)]
n—oo 1 Br(z0) n—oo 1
(ol + 7
5 .
Making r — 04, we have
1 1 o]
lim —InP<S—ned;,>— .
nooo M vn 2

Now, maximizing the right hand side over all points x( from the interior A°, we obtain

lim llnIP’ {177 € A} > sup <_”330H2> = — inf I(z).
n—oo N \/ﬁ ToEA° 2 TEA°

Thus, combining the lower and upper bounds, we have prove that for any Borel measurable set A

1 1 — 1 1
— i < lim - — < Tim - — < i . .
xlerljof(x)nlggonlnP{\/ﬁneA}nh_r)rlnlnIP’{\/ﬁneA} ;Ielgl(x) (3.1)

3.2 Definition of large deviation principle

Let (& )e>0 be a family of random elements on a metric space E and I be a function from E to [0, co].

Definition 3.1. We say that the family (£.).>0 satisfies the large deviation principle (LDP) in
E with rate finction [ if for any Borel set A C E we have

— inf I(z) <limelnP {& € A} <limelnP {& € A} < — inf I(x). (3.2)
r€A° e—0 e—0 €A

We remark that in the case of a countable family of random elements (&,,)n>1, the large deviation
principle corresponds to the statement

— inf I(z) < lim a,InP {¢, € A} < lim a,InP {¢, € A} < — inf I(x)
n—00 z€A

z€A° n—00

for some sequence a,, — 0. In fact, we have proved in the previous section that the family (%Sn)n>1

2
or (%) . satisfies the large deviation principle in R? with rate function I(z) = @, z € R? and
n>

an = + (see inequality (3.1)).

14
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Lemma 3.2. A family (§)e>0 satisfies the large deviation principle in E with rate function I iff

I < s )

il_r)r(l)slnIP{ﬁseF}i éngrl(x) (3.3)
for every closed set F' C E, and

limeInP {{ € G} > — inf I(x) (3.4)

e—0 zelG

for every open set G C E.

Proof. We first remark that inequalities (3.3) and (3.4) immediately follow from the definition of LDP
and the fact that ' = F and G = G°.
To prove (3.2), we fix a Borel measurable set A C E and estimate

(3.4)
— inf I(z) < limelnP {£& € A%} <limelnP {& € A}

zeA° e—0 e—0

. . _. (333)
<limelnP {{ € A} <limelnP {& € A} < — inf I(z).
e—0 e—0 T€EA

O]

Remark 3.3. A similar statement to Lemma 3.2 can be done for a countable family of random
elements (&,)n>1-

Remark 3.4. We note that repeating the proof from the previous section, one can show that the
family (y/2€).., satisfies the LDP in R? with rate function I(z) = |z||?, where £ is a standard
Gaussian random vector in R

Proposition 3.5. Let there exist a subset Ey of the metric space E such that
1) for each x € Ej
lim limelnP {{ € By (x)} > —1(x),

r—=0+ 0

where B(x) denotes the ball with center x and radius r;

2) for each x satisfying I(x) < oo, there exists a sequence x, € Fy, n > 1, such that z, — =z,
n — oo, and I(x,) — I(x), n — oo.

Then lower bound (3.4) holds for any open set G.

Proof. First we note that it is enough to prove the lower bound for all open G C E satisfying ing I(z) <
e

00.
Let 0 be an arbitrary positive number. Then there exists 2o € G such that

I inf [ 0.
(0) < inf 1(z) +
Hence, by 2) and the openness of G we can find £ € G N Ey that satisfies

I(%) < I(zo) + 6.

15
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Next, using 1) and the openness of G, there exists r > 0 such that B,(Z) C G and

limelnP{¢ € B,(2)} > —1(%) — 4.

e—0

Consequently, we can now estimate

limelnP{{ € G} > limelnP {& € B, (2)}

e—0 e—0
> —1(%) — 0 > —I(z9) —20 > — inf I(x) — 30.
peG
Making 6 — 0, we obtain the lower bound (3.4). O

Proposition 3.5 shows the local nature of the lower bound. Similarly one can prove a similar result
for a countable family of random elements (&,)n>1.

Exercise 3.6. Let ({).>0 satisfies the LDP in E with rate function I. Show that

a) if A is such that inf I(x) = inf I(z), then
TEA® €A

;13%81111? {&c e A} = —xlrelgl(x);

inf I(x) = 0.
b) b =0

Exercise 3.7. Let E =R and £ ~ N(0,1). Show that the family (¢£).>¢ satisfies the LDP with rate
function
if 0
I(z) = +o0o ifx #0,
0 if £ =0.
Compare this claim with the result of Remark 3.4.

Exercise 3.8. Let a,, b,, n > 1, be positive real numbers. Show that

— 1 — 1 — 1
lim —In(a, +b,) = lim —Ina, V lim —Inb,,

where a V b denotes the maximum of the set {a,b}.

Exercise 3.9. Let 11,72 ~ N(0,1). Let also for every e > 0 a random variable £, have the distribution
defined as follows

P{ﬁEGA}:%P{—lJr\@mGA}+%P{1+\@T)2€A}

for all Borel sets A. Show that the family (& )c~¢ satisfies the LDP with rate function I(x) =
tmin{(z —1)2, (z +1)?}, z € R.

(Hint: Show first that both families (1/en1)e>0 and (1/€n2)e>0 satisfy LDP and find the corresponding rate functions.

Then use Exercise 3.8)

16
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4 LDP for empirical means

4.1 LDP for empirical means

In this section, we will assume that £1,&s,... be a sequence of independent identically distributed
random variables in R with E&; = p. Similarly to Section 2, we consider the partial sums S, =
&+ -+ &, n > 1, and show that the family of empirical means (%Sn)n>1 satisfies the LDP, using
Cramer’s theorem. As before we denote the comulant generating function associated with & by ¢,
and its Fenchel-Legendre transform by ¢*.

Proposition 4.1. Under the assumption of Theorem 2.13, the family (%Sn)n>1 satisfies the large

deviation principle in R with rate function ¢*, that is, for every A € B(R)

1 1 — 1 1
— inf ¢*(z) < lim —InP {Sn € A} < lim —InP {Sn € A} < — inf ¢*(x).
n n

TrEA° n—oo N n—oon z€A

Proof. In order to proof the proposition, we will show that inequalities (3.3) and (3.4) in Lemma 3.2
are satisfied.

Let F be a closed subset of R. We first assume that F' C [, +00). Since ¢* is convex and increasing
on [u, +00) (see Exercise 2.12), it is easily to seen that ;1612 ©*(x) = ¢*(x0), where g = min F.. Then

we can estimate

1 1 1 1
lim —InP {Sn € F} < lim = InP {Sn > :ro} = —p*(z9) = — inf p*(z),
n n

n—oo n n—oo N zeF

by Cramer Theorem 2.13. Similarly, we can prove the same result for F' C (—oo, p]. If F € [u, +00)
and F' Z (—oo, p], then we consider two closed sets F} := F'N|[u, +00), Fy := F'N(—o0, x] and estimate

— 1 1 — 1 1 1
lim —P ln{Sn € F} < lim —1In [IP’ {Sn € Fl} + P {Sn € FQ}:|
n—oo n n n—oo N n n

— 1 1 — 1 1
= lim —InP {Sn eFl}v lim —InP {SnEFg}
n n

n—oo N n—oo0 N

— inf ¢*(z) | V | — inf ¢*(z) ) = — inf p*
—( ;;IFW@) ( ;QFQW@) inf ¢"(®),

A

by Exercise 3.8.

In order to prove lower bound (3.4), we will use Proposition 3.5. We take Ey = {x € R: ¢*(x) <
+oo}. By the continuity of ¢*, the set Ey satisfies the properties of Proposition 3.5. Fix = € Ejy such
that > u and prove that

lim lim llnIP’ {1Sn € (z —r,x—i—r)} > —p*(x). (4.1)
n

=0+ n00 1
We take r > 0 such that —§ > p and note that ¢*(z—r/2) < ¢*(x+r), according to Exercise 2.12 (v).

Hence, by Exercise 4.2 below,

1 1 1 1
lim — InP {Sne (:c—r,:c+r)} > lim —InP {Sne [x—r,az—k?“)}
n—oo 1 n n—oo N n 2

(4.2)

n—oo T

= lim lln [IP’ {15712330—74}—]?{157123704‘7“” = —¢*(x0 —7/2).
n 2 n

17
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Passing to the limit as » — 04, we obtain inequality (4.1). This finishes the proof of the proposition.
If © < p, then similarly one can obtain (4.1) similarly. The case x = pu trivially follows from the law
of large numbers and the fact that ¢*(u) = 0 (see Exercise 2.12 (ii)). O

Exercise 4.2. Let a, > b,, n > 1, be positive real numbers such that there exist limits (probably
infinite)

a:= lim llnan and b:= lim l Inb,
n—oo n n—oo n
and a > b. Show that )
lim — In(a, — b,) = a.
n—oo N

(Hint: Show that Z—: — 0, n — o0)

4.2 Multidimensional Cramer’s theorem

In this section, we will state the LDP for empirical mean of random vectors. This result generalises
Proposition 4.1.

Similarly to the one-dimensional case we introduce the comulant generating function associated
with a random vector ¢ in R? as follows

pe(\) =InEe, N eRY

where a-b = a1by +- - +agbg for a = (a1,...,aq) and b = (b, ..., bg) from RY. As in one-dimensional
case'®, one can show that the function ¢ is convex. So, we can introduce the Fenchel-Legendre

transform

pe(z) = sup {A -z —p(N)}, z€ RY,
AeR4

of a function .

Exercise 4.3. For any random vector ¢ € R? and non-singular d x d matrix A, show that ¢ ac(A) =
pe(M) and ¢y (x) = ¢ (A1),
Exercise 4.4. For any pair of independent random vectors & and 7 show that ¢ (A, 1) = pe(N) +
en(p) and ¢f  (z,y) = 9 (2) + ) (Y).

(Hint: To prove the second equality, use the equality s)\ui) FOuw) = sgp sEp FOuw)

The following theorem is multidimensional Cramer’s theorem.
Theorem 4.5 (Cramer). Let &1,&2,... be a sequence of independent identically distributed random
vectors in R? with comulant generating function ¢ and let S, = & + - + &, If @ is finite in
a neighborhood of O then the family (%S")n>1 satisfies the large deviation principle with good rate
function ¢*, that is, for every Borel set A C R?
1 1 — 1 1
— inf ¢"(z) < lim —InP {Sn € A} < lim —InP {Sn € A} < —inf ¢*(z).
n n

rEA° n—oo N n—o0 N rEA

For proof of Theorem 4.5 see e.g. [RAS15, P.61] (for simpler proof in the case p()\) < oo, A € R?,
see e.g. [Var84, Theorem 3.1], [Kal02, Theorem 27.5] or [DZ98, Theorem 2.2.30].

Exercise 4.6. Let &1, &, ... be independent random vectors in R% whose coordinates are independent
exponentially distributed random variables with rate v.'> Show that the empirical means (%S”)n>1

Msee Exercise 2.4
5see also Example 2.3
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satisfies the LDP in R? and find the corresponding rate function I.

(Hint: Use Proposition 4.5. For computation of the rate function use exercises 2.11 and 4.4)

5 Lower semi-continuity and goodness of rate functions

5.1 Lower semi-continuity of rate functions

Let (&).-( satisfy the LDP in a metric space with rate function I : 2 — [0,00]. In this section, we
are going to answer the question when the rate function [ is unique.

Example 5.1. Let £ ~ N(0,1). We know that the family (& := \/e€),. satisfies the LDP in R with

the good rate function I(z) = :

%.16 We take another function

2
. z? if
iw={7 7%
4+oo ifx =0,

and show that the family (&), also satisfies the LDP with rate function I.
Indeed, if G is an open set in R, then trivially

inf I(x) = inf I(z).
Inf I{z) = inf I(2)

For a closed F such that F' # {0} we also have

inf I(z) = inf I(2).
) =)

We have only to check the upper bound for the case F' = {0}. We compute

lim e In P {6 € F'} = limeln (P {Ve¢ =0}) = —c0 = —;rellfwf(x)

This example shows that the same family of random variables can satisfy the LDP with different
rate functions. In the rest of the section, we will impose some additional conditions on rate functions
to provide the uniqueness.

Definition 5.2. A function f: E — [—00, 400 is called lower semi-continuous if

lim f(x,) > f(z) whenever z, — x.
n—oo

Remark 5.3. Note that the function I from Example 5.1 is not lower semi-continuous. Indeed, the
inequality from Definition 5.2 does not hold e.g. for z, = %

Lemma 5.4. A function f : E — [—00,400] is lower semi-continuous iff for each a € [—o00, +0o0] the
level set {z € E: f(z) < a} is a closed subset of E.

65ee Remark 3.4
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Proof. We assume that f is lower semi-continuous and show that for every o € [—o0, +00] the level
set Lo ={z € E: f(x)<a}isclosed. If &« = 400, then the closedness L, is trivial due to L, = E.
Let a < +00. We assume that L, is not close. Then there exists a convergent sequence x, € L,
n > 1, such that x,, = = and « € L,. Using the lower semi-continuity of f and the fact that z,, € L,
n > 1, we get
o< f(z) < lim f(z,) <o
n—oo

This gives the contradiction.

Now, let L, be closed for every a € [—00, +00]. Assume that f is not lower semi-continuous. Then
there exists a sequence x,, — x such that

n—oo
We take a such that lim,_,  f(z,) < @ < f(z). Then there exists a subsequece {x,, }r>1 of {Zpn}n>1
such that
lim f(xnk) = lim f(xn) <o
k—o0 n—00
and f(zp,) < a. Hence, z,, € Lo, k> 1. Since x,, — x as k — oo, the closability of L, implies that
x € Lq. Therefore, f(z) < a. We have obtained the contradiction. O

Let Cy[0,7] denote the Banach space of continuous functions from [0,7] satisfying f(0) = 0
endowed with the uniform norm.'” Let HZ[0,7T] be the set of all absolutely continuous'® functions
f € Col0,T] with f € L2[0,T].

Exercise 5.5. Let f € C3[0,7].1Y Show that f is absolutely continuous and f coincides with the
classical derivative f’ of f. Conclude that f € HZ[0,T).

Exercise 5.6. Show that the function f(z) = 1 — |z — 1|, = € [0,2], belongs to HZ[0,2] but is not
continuously differentiable.

1 ifzelo1],
~1 ifze(1,2).

(Hint: Show that f(m) = { )

We consider a function from Cg|0, 7] to [0, +oc] defined as follows

. (5.2)
+00 otherwise .

1) = {5 Jy fayde i f e HF0.T),

Exercise 5.7. Let I : Cy[0,T] — [0, +00] be defined by (5.2). Show that I is lower semi-continuous.
(Hint: Use Lemma 5.4 and the Banach-Alaoglu theorem)

"The uniform norm on Co[0,T] is defined as || f|c = m{g}icr] |f(x)|. The space Co[0,T] endowed with this norm is a
z€|0,

separable Banach space
18 A continuous function f € C[0, T] (not necessarily f(0) = 0) is said to be absolutely continuous if there exists a
function h € L1[0,T] such that

f@&) = f(0)+ /Ot h(s)ds, te]0,T). (5.1)

Such a function h is denoted by f and is called the derivative of f.
19CT'[0, T consists of all functions from Cg[0,T] which are m times continuously differentiable on (0, T)
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Next we are going to show that one can always replace a rate function by a lower semi-continuous
rate function. Moreover, it turns out that a lower semi-continuous rate function is unique. For this, we
introduce a transformation produces a lower semi-continuous function fis. from an arbitrary function
f: E — [—00,400] (for more details see [RAS15, Section 2.2]).

The lower semi-continuous regularization of f is defined by

fise(z) = sup { inf f(y): G>xand G is open} . (5.3)
yeG

Exercise 5.8. Show that the function flsc coincides with I(x) = %2, x € R, where I was defined in

Example 5.1.

Exercise 5.9. Let f(z) = Ig(z), « € R, where Q denotes the set of rational numbers. Find the
function figc.

Lemma 5.10. The function fis. is lower semi-continuous and fis.(x) < f(x) for all x € E. If g is
lower semi-continuous and satisfies g(x) < f(x) for all x, then g(x) < fisc(x) for all x. In particular,
if f is lower semi-continuous, then f = fis.

The Lemma 5.10 says that the lower semi-continuous regularization fis. of f is the maximal lower
semi-continuous function less or equal that f.

Proof of Lemma 5.10. The inequality fisc < f is clear. To show that fis is lower semi-continuous, we
use Lemma 5.4. Let x € {fisc > a}. Then there is an open set G containing x such that iIGlf f>a.
Hence by the supremum in the definition of fis, fisc(y) > iréf f > afor all y € G. Thus G is an open

neighborhood of z contained in {fisc > a}. So {fisc > a} is open.
To show that g < fisc one just needs to show that gi;c = g. Indeed,

9(x) = gise(w) = sup {igfg : x€GandGis open}
< sup {iréff : x € Gand G is open} = fisc().

We already know that g, < ¢g. To show the other direction let « be such that g(x) > a. Then,
G = {g > a} is an open set containing = and igfg > a. Thus, gjsc(x) > a. Now increasing « to g(z),

we obtain the needed inequality gis.(x) > g(z). O

Exercise 5.11. 1) Show that if 2, — =, then fisc(z) <lim, .  f(z,).

(Hint: Use Lemma 5.10, namely that the function fisc is lower semi-continuous and fisc < f)

2) Show that for each the supremum in (5.3) can only be taken over all ball with center x, namely

fise(w) = Sup yeiBan(x) f(y) (5.4)

(Hint: Use the fact that any open set G containing x also contains a ball B,(z) for some r > 0. It will allow
to prove the inequality fisc(z) < sup inf( ) f(y). The inverse inequality just follows from the observation that
r>0YyEBr(z

supremum in the right hand side of (5.4) is taken over smaller family of open sets)
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3) Prove that for each = € F there is a sequence z,, — x such that f(x,) — fisc(z) (the constant
sequence z, = z is allowed here). This gives the alternate definition

o) = min { (2), T 10}

Yy—x

(Hint: Use part 2) of the exercise to construct the corresponding sequence z,, n > 1)

Proposition 5.12. Let (§)->0 satisfy the LDP in a metric space E with rate function I. Then it
satisfies the LDP in E with the rate function Ii.. Moreover, there exists only unique lower semi-
continuous associated rate function.

Proof. We first show that (£.)c~¢ satisfies the LDP in E with the lower semi-continuous function [jg.
For this we check the inequalities of Lemma 3.2. We note that the upper bound immediately follows
from the inequality Iisc < I (see Lemma 5.10). For the lower bound we observe that irGlf L = irGlf 1

when G is open. Indeed, the inequality igf g < i%f I follows from Ii;c < I. In order to prove inverse

inequality, we will use the definition of lower semi-continuous regularization. Remark that for every
x € G one has fis(z) > igf 1. Hence igf Lige > igf I

To prove the uniqueness, assume that (3.2) holds for two lower semi-continuous functions I and

J, and let I(x) < J(x) for some © € E. By the lower semi-continuity of J, we may choose a

neighborhood G of x such that inf J > I(z), taking e.g. G as an open neighborhood of = such that
G

G C {y s J(y) > I(z) + M} Then applying (3.2) to both I and J yields the contradiction

—I(z) < —ir(l;fIS limelnP {& € G} < —inf J < —I(x).
G

e—0

We obtained the contradiction with the assumption I(z) < J(z). O

Exercise 5.13. Assume * that is the Fenchel-Legendre transform of the comulant generating func-
tion. Show that ¢* is lower semi-continuous.

(Hint: Show that supremum of a family of continuous functions is lower semi-continuous)

5.2 Goodness of rate functions

We remark that in many cases the rate function satisfies better properties than lower semi-continuity.

Definition 5.14. We say that a rate function I : E — [0, +00] is good if the level sets {z € E: I(x) < a}
are compact (rather than just closed) for all a > 0.

Example 5.15. Show that the rate function I(x) = ”x”2, r € R?, from Exercise 1.5 is good.

2

Remark 5.16. The rate functions from all previous examples are also good.

Now we consider another example of a good rate function which is the rate function for LDP for
Brownian motion. We obtain the LDP for Brownian motion later and here we just show that the
associated rate function is good.

Exercise 5.17. Let I : Cy[0, 7] — [0, +00] be defined by (5.2). Show that theset {f € Cy[0,7]: I(f) < a}
is equicontinuous?’ and bounded in Cg[0, 7] for all & > 0. Conclude that I is good.
(Hint: Using Hélder’s inequality, show that | f(¢)— f(s)|* < |[t—s] fOT f?(z)dx for all t, s € [0, T] and each f € HZ[0,T))

2gee Definition VI.3.7 [Con90]
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6 Weak large deviation principle and exponential tightness

6.1 Weak large deviation principle

Proposition 3.5 shows that lower bound inequality (3.4) is enough to show only for open balls. Unfor-
tunately, it is not enough for upper bound (3.3). Later, in Proposition 6.4, we will show that upper
bound (3.3) for closed (or open) balls will only imply the upper bound for compact sets F. To have
the upper bound for any closed set we need one extra condition, called exponential tightness, which
we will discuss in the next section. Let us consider the following example taken from [DZ98, P. 7]
which demonstrates that upper bound for all compact sets does not imply inequality (3.3) for any
closed set.

Example 6.1. We consider random variables &; := %, e >0,in R and set I(z) := 400, z € R. Then
for any compact set F' in R (which is also bounded) we have

;lg(l)eln]P’ {SEGF}:foo:félglf?I(z)

because there exists €9 > 0 such that P {&, € F} =0 for all € € (0,£¢). But it is easily seen that this
inequality is not preserved for the closed set F' = R. Indeed,

hmsln]P’ {& e R} = hmelnl =0g —o0= 1n£[( x).
xre

We also remark here that the family (£ ).~ and the function I satisfy lower bound (3.4).

Consequently, it makes sense to introduce a relaxation of the full LDP, where we will require the
upper bound only for compact sets.

Definition 6.2. We say that the family (& ).-0 satisfies the weak large deviation principle (weak
LDP) in F with rate function I if

hmslnIP’{stF}<—1n£I( x) (6.1)
xe
for every compact set F' C E, and
limelnP {{. € G} > — mf I( ) (6.2)
e—0

for every open set G C F.

We remark that Example 6.1 shows that the family ({E = %)5>0 satisfies the weak LDP in R with
good rate function I(x) = 400, z € R, but it does not satisfy the full LDP.

Let us consider another interesting example of a family of random elements in C[0,7] which
satisfies the weak LDP but it does not satisfies the full LDP for any rate function. This is a recent
result obtained by V. Kuznetsov in [Kuzl5].

Example 6.3 (Winding angle of Brownian trajectory around the origin). Let w(t) = (w1(t), w2 (1)),
t € [0,7], be a two dimensional Brownian motion started from the point (1,0). We denote for
every t € [0,7T] the angle between the vector w(t) and the z-axis (the vector (1,0)) by ®(¢) and set
O (t) = ®(et), t € [0,T]. It turns out that the family (®.).>0 satisfies only the weak LDP in the space
of continuous functions C[0, T].
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Winding angle of Brownian motion

In the next section, we will consider conditions on a family (£ )c~¢ which will guarantee the
implication. Now we will give a useful statement which allows to check the upper bound for the weak
LDP.

Proposition 6.4. Let (& )->0 be a family of random wvariables in a metric space E and let I be a
function from E to [0,400]. Then upper bound (6.1) follows from

hm hmslnIP’ {{ € By(x)} < —I(x)

r—0e—
forallx € E.
Proof. Let F be a compact set. We set o := ;Ielfv I(x) and assume that o < co. Remark that for every
xeF I(z)> ;rellfw I(x) = . Hence, for any fixed § > 0

}%Eslnp {(.€B(2)} < —I(z)<—a< —a+§

for all x € F. Consequently, by the definition of limit, for every x € F there exists r, > 0 such that
limelnP {& € By, (2)} < —a+ 6.
e—0

Since the family of balls B, (x), € F, is an open cover?! of F. By the compactness of F, there
exists a finite subcover of F', i.e. there exist x1,...,2m, € F such that F' C [, BT:ck(iUk)' Now we
can estimate

m
TP {& € F} < [menP {55 c kL_Jl B, (xk)} < Tmeln (le {55 €B,, (:@})
Exercése 3.8

max limelnP {EE € Brzk(xk)} < —a+d=—inf I(x)+0.

k=1,....me—0 zEF

Making § — 0, we obtain
limelnP {& € F} < — inf I(x).
e—0 zeF

Similarly, one can show inequality (6.1) in the case o = 400 replacing —a + § by —%. O

Exercise 6.5. Finish the proof of Proposition 6.4 in the case in]f?I(x) = +o00.
TE

#'Each set B, (x) is open and F C User Br. ()
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6.2 Exponential tightness

We start from the definition of exponential tightness.

Definition 6.6. A family of random elements ({;)s>0 is said to be exponentially tight in E if for
any number § > 0 there exists a compact set K C F such that

TimelnP {& ¢ K} < 5. (6.3)

We remark that in the case of a countable family of random elements (&,)n>1, the exponential
tightness corresponds to the statement

i a, InP {&, ¢ K} < -5 (6.4)
for some a,, — 0.

Exercise 6.7. Prove that a family (£ ).~¢ is exponentially tight in E if and only if for any b > 0 there
exists a compact K C E and ¢¢ > 0 such that

P{e ¢ K}<e = e€(0,¢).

Exercise 6.7 shows that the exponential tightness is much more stronger than the tightness??.

Exercise 6.8. Let F be a complete and separable metric space.

a) Show that exponential tightness implies tightness for a countable family of random variables.

(Hint: Prove a similar inequality to one in Exercise 6.7 and then use the fact that any random element on a

complete and separable metric space is tight (see Lemma 3.2.1 [EK86])
b) Show that tightness does not imply exponential tightness.

Example 6.9. Let ¢ be a standard Gaussian vector in R?. We consider as before &, = /2¢ and check
the family (£.).0 is exponentially tight in R?. For this we will use the fact that this family satisfies
the LDP.

So, we fix # > 0 and take a compact set K, := [—a, a]? such that d\gnf y I > B, where I(z) = ”962”2,
Re\(—a,a

x € R?, is the rate function for the family (£.).50?%. Since the family (£.).>0 satisfies the LDP with
rate function I, we have

lim < lim d\ (= d} <— < —B.
;%SIHP {fEQKa}_ig%slnP {fEG]R \ (—a,a)®} < Rd\gﬁ,a)dl_ 6]
Exercise 6.10. Let (£.):>0 be a family of random variables in R such that there exist A > 0 and

% > 0 such that E e /&! < k< for all € > 0. Show that this family is exponentially tight.
(Hint: Use Chebyshev’s inequality)

Proposition 6.11. If a family (&:)e>0 is exponentially tight and satisfies a weak LDP in E with rate
function I, then it satisfies a full LDP. Moreover, if I is lower semi-continuous, then I is good.

22 A family of random variables (&) is tight if for any 6 > 0 there exists a compact set K C E such that P {¢£. ¢ K} <6
for all €
%5ee Exercise 3.7
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Proof. In order to prove a full LDP, we need to stay only upper bound (3.3) for each closed set
F C E. So, let F be a given closed set and K and 8 > 0 be the corresponding set and constant from
the definition of exponential tightness (see (6.3)). Then, using properties of probability, we have

P{, eF}<P{{ € FNK}+P{¢ € K},

where K = E '\ K is the complement of K. Consequently, using Exercise 3.8 and the fact that the set
K N F is compact??, one can estimate

limelnP {{ e F} <limeln(P{{e FNK}+P {¢ € KY)
e—0 e—0
= limIn P {¢ € FﬂK}\/ggr(l)gln]P’ {¢ ¢ K}

< (=, dat, 1) v (-5) < (- L ) ) v ().

zeFNK

Letting 8 — +o00, we get upper bound (3.3).

We assume that I is lower semi-continous. We fix @ > 0 and show that the level set {z € E :
I(x) < a} is compact. Let K C E be the compact set from (6.3) in Definition 6.6 with § = a + 1.
Applying the lower bound of the definition of LDP to the open set K¢, we obtain

— inf I(z) <limelnP {{ € K} < -0 < —a.
rekKe e—0

Therefore, the closed set {r € E: I(z) < a} is a subset of the compact set K, that implies that it is
compact itself. ]

It turns out, that the full LDP implies exponential tightness, but only for a countable family
(SS)nZL

Proposition 6.12. Let E be a complete and separable metric space. If (&,)n>1 satisfies the full LDP
with a good rate function I. Then it is exponentially tight.

Proof. Since F is separable, for any k € N we may cover F by some open balls By, By, ... of radius
1/k. We put Uy, = U;n:l By;. We fix an arbitrary § > 0 and £ € N and show that there exists
my, > 1 such that for every n > 1

_ Bk
P {&n & Ugmy,} <€ on. (6.5)
We first remark that the level set Lgy := {z € E : I(z) < Bk + 1} is compact due to the goodness
of I. Since By, Bja, ... is an open cover of Lgy, there exists a finite subcover Byj,, ..., By, of Lgy,

where j; < --- < j;. Then trivially Lg, C Uy j. By upper bound for the LDP,

Jim apInP {&, € Uy, } < —jnf I < —iLr?iI < —Bk— 1.

k,J;
According to the definition of the upper limit, we can choose N > 1 such that for every n > N
anInP {&, € Ug; } < -k

or equivalently
_ Bk
P {&n & Upjy < e on.

since K N F is a closed subset of the compact set K
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Next, using the fact that P {£, & Uy} — 0 as m — oo, we can find my, > j; such that inequality (6.5)
for every 1 < n < N. Moreover, for every n > N

P {€0 & Uy} <P {0 ¢ Upy} <€ om.

This proves (6.5) for every n > 1.
Summing (6.5) over k, we obtain

P{WﬂUk’mk}SZP{wUkvmk}éZe R
k=1 k=1 k=1

Let K be the closure of the set ﬂgozl Uk m,,» which is compact, since ﬂzozl Uk, m,, is totally bounded.?®
Therefore,

T}LH;oan InP {fn ¢ K} < 1}52@ an InP {fn g Dl Uk,mk} < _B-
This finishes the proof of the proposition. O

Exercise 6.13. Find a simpler proof of Proposition 6.12 in the case E = R,
(Hint: Cover a level set {x € R* : I(x) < 8} by an open ball and use the upper bound)

7 Large deviation principle for Brownian motion

7.1 Schilder’s theorem

We start this section with computation of the rate function for finite dimensional distributions of a
Brownian motion. So, let w(t), t € [0,7], denote a standard Brownian motion on R.26 We take a
partition 0 = ¢y < t; < --- < ty = T and consider the random vector £ = (w(t1),...,w(tq)) in R%. Let
&1,&9,... be independent copies of £. Then the distribution of

n

1 1
k=1
coincides with the distribution of ﬁ(w(tl), ...,w(tq)). Consequently, one can use Theorem 4.5 to

conclude that the family (%(w(tt),...,w(td))) . satisfies the LDP with good rate function ¢f.
n

Next we compute gog to see the precise form of the rate function. We remark that the random vector

n— <w(t1) w(ts) —w(t)  w(ta) —w(td1)>

is a standard Gaussian vector in R?. According to exercises 4.4 and 2.11,

2
] d
op(x) = 5 x € R%

25 A set A is totally bounden in a metric space E if for every r > 0 it can be covered by a finite number of balls of
radius 7 (see e.g. Definition 1.14 [DS88]). By Theorem 1.15 [DS88], the closure of a totally bounded set is compact in E,
if F is complete.

64y(t), t € [0,T] is a Brownian motion with w(0) = 0 and Varw(t) = ¢
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We observe that
w(ty)
n=A e
w(ta)
where A is some non-singular d x d-matrix. Thus, by Exercise 4.3,

HAI’H2 1 Zn (iL‘k - a:k_l)Q
* = * _ _= * A = = — _—_—
oe(x) = -1, (x) = ¢ (Az) 2 25 etk ’

where zg = 0.
Let us denote

w.(t) = VEw(t), telo,T].
Then taking a function f € C[0,T], we should expect that the family (we)e>o will satisfy the LDP in
C[0, T] with rate function

T
1) = 5 /0 o

Now we give a rigorous statement about the LDP for a Brownian motion. So, let HZ[0,T] be a
set of all absolutely continuous functions h € Cy[0,T] with h € L3[0,T] (see also Section 5 for more
details).

Theorem 7.1 (Schilder’s theorem). The family (we)->o satisfies the large deviation principle in
Col0, T'| with good rate function

1) = {;fon%)dt if f € H3[0,7),

+00 otherwise .

In order to prove Schilder’s theorem, we are going estimate probabilities P {w. € B,.(f)}, where
B.(f) ={9€C[0,T]: ||lg — fllc <7} is the ball in C[0,T] with center f and radius r. This will be
enough to prove the weak LDP according to Proposition 6.4 and Proposition 3.5. Then we will prove
the exponential tightness of (we).>o that will guarantee the full LDP by Proposition 6.11. The fact
that the rate function I is good was considered as an exercise (see Exercise 5.17 above).

Exercise 7.2. Let N(t), t > 0, be a Poisson process. Define N, (t) = L N(nt), t > 0, for all n > 1.

—n
1. Show that for every ¢ > 0 the family (N, (t)),>1 satisfies the LDP in R (with a,, = 1) and find
the corresponding rate function.

2. Show that for every t; < tg < --- < tg4 the family ((Np(¢1),..., Nn(tq)))n>1 satisfies the LDP in
R? (with a, = 1) and find the corresponding rate function.

3. Which form should have the rate function in the LDP for the family of processes {N,(t), t €
[0,T]}n>1 in the space Col0, T]?%7

(Hint: Express Nyn(t), t > 0, as the empirical mean of independent copies of the Poisson process N(t), ¢ > 0. Then
use Cramer’s theorem (see Proposition 4.1 and Theorem 4.5) for 1. and 2. For the computation of the Fenchel-Legendre

transform in 2., use the same approach as in this section)

2"The proof of LDP for processes with independent increments (in particular, for a Poisson process) can be found e.g.
in [LS87]
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7.2 Cameron-Martin formula

In order to estimate the probability P {w. € B,(f)} = P {||lw: — f|lc <}, we need to work with
distribution of the process w(t) — f(t), t € [0,T]. We start the section with a simple observation.
Let a random variable n ~ N(0, 1) be given on a probability space (£, F,P) and a € R. It turns out
that one can change the probability measure P in such a way that the random variable  — a has a
standard normal distributed. We note that

(z—a)?

. z?
e 2 = e 2

2
a
@ e

Considering the new probability measure on {2 defined as
a2
P{A} =El4 ez, A€F,
we claim that the random variable n — a has a standard normal distribution on (£, F,P%).

Exercise 7.3. Show that P® is a probability measure on 2, i.e. P%{Q} = 1.

Indeed, for any z € R we have

2
2e 2dx

p
“"w

Pid{n—a<z}=EI ,aze‘”]% /
n—a<z}=Ely o<y oz

_(z—a)? a>2
:1;‘ =

e’*
\/ 2m / V2T /oo
It turns out that for a Brownian motion we can do the same. So, let w,2(t), t € [0,7], be a
Brownian motion with diffusion rate®® o2 defined on a probability space (Q,F,P). We introduce a
new probability measure on €2 defined as follows
PR A} = Elgel MOdw20-% [T h2dt g ¢ 7
where h is a fixed function from L0, T].

Proposition 7.4. The process

wya(t) — 02 /Oth(s)ds, te0,7],

is a Brownian motion with diffusion rate o® on the probability space (Q,}",]P’h).

We remark that the statement of Proposition 7.4 is a consequence of more general Cameron-Martin
theorem about admissible shifts of Brownian motion (see [Kal02, Theorems 18.22]).

Exercise 7.5. Let w(t), t € [0,T], be a Brownian motion with diffusion rate o2 defined on (2, F,P)
and f € HS[O, T]. Find a probability measure P such that w(t) — f(t), t € [0, 7], is a Brownian motion
n (2, F,P).

(Hint: Use Proposition 7.4 and definition of absolutely continuous functions)
Exercise 7.6. Show that for every a € R and § > 0
P {wy2(t) +at <6, te€][0,T]}>0.

(Hint: Use Proposition 7.4 and the fact that sup w,2(t) and |w,2(T)| have the same distribution®?)
t€(0,T]
ZBa(t), t € [0,T], is a Brownian motion with Varw(t) = ot
gee Proposition 13.13 [Kal02]
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7.3 Proof of Schilder’s theorem
7.3.1 Proof of weak LDP for Brownian motion

The goal of this lecture is to prove the LDP for a family (w.)e>o of Brownian motions, where w.(t) =
Vew(t), t € [0,T]. The rigorous statement was formulated in Section 7.1 (see Theorem 7.1). In this
section, we will prove the weak LDP.

For the proof of the lower bound we use Proposition 3.5. So, we need to show that

1) for every f € C3[0,7]
lim limelnP {w. € B.(f)} > —1(f);

r—0e—0

1) = {;fOTf?(t)dt if f € H2[0,T),

where

400 otherwise.

2) For every f € HZ[0,T] there exists a sequence f,, n > 1, from C2[0,T] such that f, — f in
Co[0,T) and I(fn) — I(f), n — oo.

We start from checking 1). Take a function f € C3[0,T] and estimate P {|lw. — f||c < 7} from be-
low, using Proposition 7.4. We set h := f’ and consider the following transformation of the probability
measure P

PhE{A} E]IAefo ()dw€ —= T hE(t)dt . EHAGEU h(t)dwe (t) ,,fo R2(t dt]

Then the process

we(t) — 5/0 @ds = we(t) —/0 f'(s)ds = we:(t) — f(t), te€]0,T],

3

is a Brownian motion on the probability space (€, F,P"*) with diffusion rate €, according to Propo-
sition 7.4. Integrating by parts in the first integral,’® we have

T 1 T T , 1 T -
/O (1) (1) — /0 R2(8)dt = h(T)w.(T) — /0 W (et — /0 R2(8)dt = ®(h, w.).
Now, we can estimate

P {wa S Br(f)} =FE |:]I{w5€Br( )}65 (h wg) ——<I>(h ws)}

lCI)(hvwE) QEBT(f)

—: sup P(hyg)
> E Ly e, ()re- (7.1)
! 1
—< sup @(h7g) 5 —¢ Sup cb(hvg)
—e 9€Br(f) Po"{Jlwe — fllc <r} =e 95BrD P {{lwellc <7},

where the latter equality follows from Proposition 7.4. Hence,
lim limelnP {w, € B, (f)} > — hm sup ®(h,g)
=020 —0geB.(f)

T T
B0 1) = WD) = [ W soa—3 [ i

t)dt — = /T R2(t)dt = I(f)

0

30gee Exercise 7.9 below
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because P {||w:|lc <7} — 1 as ¢ — 0,3! and the function ® is continuous on Cg[0, 7] in the second
argument. This finishes the proof of 1). The proof of 2) is proposed as an exercise (see Exercise 7.8).

Exercise 7.7. Let w.(t), t € [0,T], denote a Brownian motion with diffusion rate ¢ for every e > 0.
Show that P {||w:||c <r} - 1ase — 0, for all » > 0.

Exercise 7.8. Show that for any f € HZ[0,T] there exists a sequence (f,)n>1 from FEj such that
fn— fin Col0,T) and I(f,) — I(f) as n — oc.

(Hint: Use first the fact that C'[0,7T] is dense in L2[0,T]. Then show that if h, — h in L2[0,T], then Jo hn(s)ds
tends to [; h(s)ds in Co[0,T], using Hélder’s inequality)

Exercise 7.9. Let h € C'[0,T] and w(t), t € [0,T], be a Brownian motion. Show that

T T
/ h(t)dw(t) = h(T)w(T) — h(0)w(0) — / B (H)w(t)dt.
0 0

(Hint: Take a partition 0 = to < t; < --- < t, = T and check first that functions h, = _;_, h(tk)ﬂ[tk_l B
to h in L2[0,T] as the mesh of partition goes to 0, using e.g. the uniform continuity of h on [0,T]. Next show that

) converge

S Bt 1) (w(t) — w(te-1)) = bt )w(T) — hO)w(0) — 3 w(te) ((te) — hlti-1))

Then prove that the first partial sum converges to the integral fOT h(t)dw(t) in Ly and the second partial sum converges
to fOT w(t)dh(t) a.s. as the mesh of partition goes to 0)

To prove the upper bound?? (6.1) for any compact set F' C Cg[0, T, we will use Proposition 6.4.
We are going to show that for any f € Coy[0, 7]
lim lim e n P {w. € B,(f)} < —1(f).

r—0e—0

So we fix any f € Co[0,T] and h € C'[0,T], and estimate

P cB f = 1o(hwe) ,— 1@ JWe
{wE ( )} |: {ws EB’I‘( p)}es (h, )e e (h ):|
®(h,g)

1 .
—= inf
lq)(hvwi)e € geBr(f)

<E [H{wsemf)}ef

inf  ®(h, -1 f ®(h,
< o ok (h.9) (h.9)

in
]Eeéq)(hzu%) —e € geBr(f)

beclause Ee:®hws) — 1 The last equality follows from the fact that P€ is a probability measure and
E e ®(we) ig the expectation of 1 with respect to P/<. Consequently,

lim limeInP {w. € B,(f)} < —lim inf &(h,g) = —®(h, f).

r—0e—0 r—0geB.(f)
Now, taking infimum over all h € C'[0, T, we obtain

. I < . o — _
lim lim e InP {w. € B.(f)} < hegg[fm( ®(n, f)) p O(h, f).

It remains only to show that

sup  ®(h, f) = I(f). (7.2)
heC1[0,1]

31see Exercise 7.7
32The method applied here was taken from [DMRYZ04], see also [KvR19] for an infinite dimensional state space
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7.3.2 A variational problem

We will first check equality (7.2) for the case f € C3[0,T] because it is much more simple. The general
case is based on the Riesz representation theorem and will be state in Proposition 7.10 below (see
also [KvR19, Proposition 4.6]). We observe that for f € C2[0,7] and any h € C}[0, T

T T
B0 1) = WD) = [ Wfod—3 [ 1

0

T , 1 T 1 T ,
:/0 W) f (t)dt—z/o h2(t)dtg2/0 F2(t)dt = I(f),

where we first used the integration by parts and then the trivial inequality ab < % + %, a,b € R.
Moreover, we see that the last inequality becomes an equality if A = f’. So, the supremum is attained
at the point h = f" and ®(f’, f) = I(f). This proves (7.2).

Proposition 7.10. For each f € Cy[0,T]

sup  ®(h, f) = I(f),
heC1[0,T]

where ®(h, f) = h(T)f(T) — [ B (&) f(t)dt — L [T h2(t)dt.
Proof. We first prove the assertion of the proposition for f satisfying

J(f):= sup @(h,f) <.
heC1[0,T]

Replacing h by 6h, 6 € R, and using the linearity of C1[0, 7], we get

J(f)= sup @(6h,[)
heC1[0,T]

for all # € R. Next, we note that for each h € C1[0, 7] the function

0 — ®(6h, f) = 0G(h, f) — 9; /T h2(t)dt,
0

where

T
GWﬁzMﬂﬂﬂAhWM®%

reaches its maximum at the point
Hmax — G(h7 f)
h T 9
Jo h2(t)dt
Consequently,

J(f)= sup ®(6h,f)= sup @(0;h, [),
heCl[0,T] heCl0,T]

which implies

N <Y N

=— sup 7.3
2 pecrjom) fy h2(t)dt (7:3)

J(f)
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We can consider C![0, T as a linear subspace of L2[0, T], which is dense in Lz[0, T]. Therefore, the
linear form

Gy:h—G(h,f),

which is continuous on C![0, 7], by (7.3), can be extended to the space L2[0,T]. Using the Riesz
theorem, there exists a function gy € L2[0,T] such that

T
Gr(h)=G(h, f) = /0 gf(t)h(t)dt. (7.4)

Exercise 7.11 (ii) and equality (7.4) imply that f is absolutely continuous and f= gs. Applying the
Cauchy-Schwarz inequality to (7.4), we get

T T T
Gl < [ apnar- [ woa= 1) [ rar

0

with equality for h proportional to gs. The latter inequality yields J(f) < I(f) and since C'[0,T] is
dense in L]0, T, we get the equality J(f) = I(f).

If I(f) < oo, then f is absolutely continuous and gy = f in (7.4), by Exercise 7.11 (i). So, J(f) <
I(f) < oo and, consequently, we have J(f) = I(f). This completes the proof of the proposition. [

Exercise 7.11. Let f € Cy[0,T].

(i) Let f be absolutely continuous. Show that for every h € C1[0,T]

T T
WA = [ Hoswa = [ nofoa. (7.5)

0

(Hint: Check first the equality if f € C[0,T]. Then, in the general case, approximate f in L1[0,T] by continuous

functions)

(ii) Let g € L3[0,T] and for every h € C[0,T]

T T
W(T)F(T) — / W) (1)t = /0 h(t)g(t)dt.

0

Show that f is absolutely continuous with f =g.

(Hint: Consider the function f(t) = fot g(s)ds and apply to fOT h(t)g(t)dt the integration by parts formula)

7.3.3 Exponential tightness of 1

To finish the proof of Schilder’s theorem, it remains to prove that (wg)e>o is exponentially tight.
Exercise 6.10 shows that the estimate N )
E e lé] < ke

for some k > 0, A > 0 and all £ > 0, is enough to conclude the exponential tightness of (£.)c~¢ in
R. It turns out, that a similar estimate allows to get exponential tightness in the space of continuous
functions. However, one has to control the Holder norm.
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Proposition 7.12. Let (& )z>0 be a family of random elements in Cyl0,T). If there exist positive
constants v, A and k such that for all s,t € [0,T], s <t, ande >0

A €e(t)—Ee(s)] 1

Eee (t—s)7 < HS,

then the family (& )eso is exponentially tight in Col0,T).
The proof of Proposition 7.12 follows from Corollary 7.1 [Sch97].

Lemma 7.13. Let w(t), t € [0,T], be a standard Brownian motion. Then the family (v/ew)eso is

exponentially tight in Co[0,T].

Proof. To check the exponential tightness of (y/ew)es>0, we will use Proposition 7.12. We first remark
a2

that | e*W®-w()=5 (=) — 1 for all @ € R and s,t € [0,T], s < t (see Exercise 7.14 below). So, we

can estimate for e > 0, s <t and a > 0

E calvVEu(t)—vVEu(s) < | ealvEwH)—vEu(s) | | o-alvEw(t)—vEu(s)

_ 9F ca(VEw(t)—vEw(s)) _ of pav/E(w(t)—w(s))— 252 (t-s)+ 5% (t—s) _ o, %% (t-s)

V2

Taking o := , We obtain
eVt—s
V2[Vew(t) —vew(s)] 1 1
Ee =Vi=s < 2e:= < (2e)-.
This implies the exponential tightness. O

Exercise 7.14. Let w(t), t € [0,T], be a standard Brownian motion. Show directly that for each
aeR s,te0,T],s<t

o2

 pow(t)—w() 52 (t=s) _ 1
(Hint: Use Exercise 7.3)

Remark 7.15. Let w(t), t € [0,T], be a standard Brownian motion on R?. Then using the same
argument, one can prove that the family (w.)e~o satisfies the LDP in Co([0, 7], R?) with rate function

400 otherwise,

1(f) = {HOT IF(@t)2dt if f € H3([0,T),R),

where Co([0,T],RY) = {f = (f1,...,fa) : fi € Co[0,T], i=1,...,d}, H3([0,T],RY) ={f = (f1...., fa) :

fi€ H}0,T], i=1,...,d} and f = (f1,..., fa).

8 Contraction principle and Freidlin-Wentzell theory

8.1 Contraction principle

The goal of this section is the transformation of LDP under a continuous map.
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Theorem 8.1 (Contraction principle). Consider a continuous function f between two metric spaces
E and S, and let & be random elements in E. If (& )e>0 satisfies the LDP in E with rate function I,
then the images f(&:) satisfy the LDP in S with rate function

J(y) =inf{I(x): f(z) =y} = fiilr(l{fy}) I, yeb. (8.1)

Moreover, J is a good rate function on S whenever the function I is good on E.

Proof. We take a closed set F' C S and denote f~1(F) = {x: f(z) € F} C E. Then

limelnP {f(¢) € F} = limelnP {¢& € f71(F)}

< — inf I(z)=—inf inf I(z)= — inf J(y).
- zefTH(F) (@) YEF f(z)=y (=) yer )
The lower bound can be proved similarly.
When [ is good, we claim that

{(J<ap=f{I<a})={f(z): I(z) <o}, a=0. (8.2)

To see this, fix any a > 0, and let z € {I < a}, i.e. I(x) < a. Then

J(f(2)) = mf{I(u) : fu) = f(x)} <I(z) <o,

which means that f(z) € {J <a}. Since I is good and f is continuous, the infimum in (8.1) is
attained at some x € E, and we get y = f(x) with I(x) < a. Thus, y € f ({I < a}), which completes
the proof of (8.2). Since continuous maps preserve compactness, {J < a} is compact, by (8.2). O

Exercise 8.2. Let I be a good rate function on E and f be a continuous function from E to .S. Show
that the infimum in (8.1) is attained, that is, there exists = € E such that f(z) =y and J(y) = I(x).

Exercise 8.3. Let w(t), t € [0,T], be a Brownian motion on R with diffusion rate o2 and w(0) = xo.
Show that (w(e-))e>o satisfies the LDP in C[0, 7] and find the associated rate function.
(Hint: Take the continuous map ®(f)(t) = o f(t) + xo, and use the contraction principle and Schilder’s Theorem 7.1)

Remark 8.4. Let us explain the form of the rate function for Brownian motion using a concept of
white noise and contraction principle. We recall that the white noise w(t), ¢t € [0, T, formally can be
defined as a Gaussian process with covariance E w(t)w(s) = do(t —s), where dy denotes the Dirac delta
function. One should interpret the white noise as a family of uncountable numbers of independent
identically distributed Gaussian random variables. Similarly, as for Gaussian vectors, where the rate

2
function is given by the formula @ = Zzzl %’“, the rate function for the family (y/21)s>0 should be

We remark that a Brownian motion formally appears as a continuous function of white noise, namely
the process w(t) := fg w(r)dr, t € [0,T], defines a standard Brownian motion. Indeed, it is a Gaussian
process with covariance

s t s t s t s
E </ w(rl)drl/ lb(TQ)dTQ) = / / Ew(rl)w(rg)drldrg = / / 50(T1—T2)d7”1d7”2 = / 1d’l"1 =S
0 0 0 0 0o JO 0
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if s <t. So, w = ®(w), where ® denotes the integration procedure. By the contraction principle, the
rate function of the family (w. = ®(1.))e>0 has to be

Exercise 8.5. Let B(t) = w(t) — tw(1), t € [0,1], be a Brownian bridge on R, where w is a standard
Brownian motion on R. Show that the family (1/eB).>¢ satisfy the LDP in Cy[0, 1] with good rate
function

I(f) = LIy f2yde i f e H3[0,1] and f(1) =0,
400 otherwise

(Hint: Use the contraction principle)

Exercise 8.6. Let £ = (,)n>1 be a sequence of ii.d. N(0,1) random variables. Use Schilder’s
theorem to show that the family (1/2€).~¢ satisfies the LDP in R*> with the good rate function

Hey < [T e = @) € B,
400 otherwise.

(Hint: Consider the map ®(f) = (M> for an infinite partition 0 = tg < t1 < -+ < tp, < --- — 1 of the
n>1

Vin—tn—1

interval [0, 1] and use the contraction principle)

8.2 Freidlin-Wentzell theory

In this section, we prove the LDP for solutions of stochastic differential equations (shortly SDE). Let
consider a family (z:)s>0 of solutions to the following SDEs

dz:(t) = a(z:(t))dt + Vedw(t), 2.(0) =0, (8.3)

where a : R — R is a bounded Lipschitz continuous® function and w(t), t € [0,T], is a standard
Brownian motion. We recall that a continuous process z.(t), t € [0,7], is a solution to (8.3) if

zg(t):/o a(z(s))ds + vEw(), te[0,T).

By Theorem 21.3 [Kal02], equation (8.3) has a unique solution.

Theorem 8.7 (Freidlin-Wentzell theorem). For any bounded Lipschitz continuous function a : R — R
the solutions the family (z¢)e>0 satisfies the large deviation principle in Cy[0,T| with good rate function

. (8.4)
400 otherwise.

1) = {5 Jo TF(6) —a(F )Pt if f € 0,7

334 : R — R is Lipschitz continuous function if there exists a constant L such that |a(z1) — a(z2)| < L|z1 — z2| for all
r1,x2 € R
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Proof. To prove the theorem, we will use the contraction principle. We first remark that the equation

t
2(t) = /0 a(z(s))ds +g(t), te][0,T], (8.5)

has a unique solution for any g € Cy[0,T], since the function a is bounded and Lipschitz continuous.
So, there exists a function ® : Cy[0,7] — Cp[0,T] such that z = ®(g). Let us show that & is
continuous. Take g1, g2 € Co[0,7T] and set z1 := ®(g1), 22 := ®(g2). Then one can estimate

|21(t) — 22(t)| = [®(g2) — (g2)| = /0 a(21(s)) — a(z2(s))ds + gi1(t) — g2(?)

< / la(z1(s)) — a(z2(s))|ds + [g1(t) — g2(t)]
0
< L/O 121(5) — 23(5)|ds + lg1 — g2llc

Gronwall’s Lemma 21.4 [Kal02] yields |z1(t) — z2(t)| < |lg1 — g2/|ce* for all ¢ € [0,T]. Hence,

12(91) = @(g2)llc = ll21 = 22llc < "llg1 — gallc,

which shows that ® is continuous. Using Schilder’s theorem 7.1 along with the contraction principle
(see Theorem 8.1), we conclude that the family (z:)es¢ satisfies the LDP in Cy[0, 7] with the good
rate function

I(f) = inf {L(g) - ¢>(g)—f}—inf{lw(g): o= | a(f(S))ds+g(t)},

where I, is defined in Theorem 7.1. Due to the uniqueness of solutions to differential equation (8_.5), the
function @ is bijective. Moreover, g and f = ®(g) belong simultaneously to H2[0,7] and ¢ = f —a(f)
almost everywhere.?* Thus,

1) = {foT (F(t) — a(f(1)))%dt i f € H[0,T),

+o00 otherwise.

Exercise 8.8. Let ® : Cy[0,7] — Cp[0,T] be defined in the proof of Theorem 8.7.
1) Show that the function ® is bijective.

2) Prove that g € HZ[0,T] if and only if f = ®(g) € HZ[0,T].

(Hint: Use equation (8.5) and the definition of H3[0,T])

3) Show that g = f — a(f) almost everywhere for every g € H2[0,T] and f = ®(g).

345ee Exercise 8.8
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8.3 Contraction principle for some discontinuous functions

In the first section, we showed that LDP is preserved under a continuous transformation. But very
often one must work with discontinuous transformations. It turns out that LDP can also be preserved
in some cases. Let us consider the following example which was taken from [DO10].
Given a standard Brownian motion w(t), ¢t € [0, 7], in R? and a closed set B C R?, we consider
the stopping time
T:=1inf{t:w(t) € B} AT,

where a A b = min {a,b}. Let y(t) := w(t A7), t € [0,T], denote the stopped Brownian motion and
ye(t) := y(et), t € [0,T]. We are interested in the LDP for the family (y.)e>0. We remark that the
process Y. is obtained as an image of w.(t) = w(et), t € [0,T]. Indeed, let us define for a function
f € CO([Oa T]> Rd)

7(f) :=inf{t: f(t) € B} AT,

and
O(f)(t) = fEAT(f)), te[0,T] (8.6)

Then, by Exercise 8.10, ® is a map from Cq([0, T], R?) to Co([0, T], R?) and 3. = ®(w.). Unfortunately,
we cannot apply the contraction principle here since ® is discontinuous. But still, one can use the idea
of contraction principle to obtain the LDP for (y.)c~o. We remark also that the set B could be chosen
by such a way that the set of discontinuous points of the map ® has a positive Wiener measure®® (for
more details see Example 4.1 [DO10]).

Proposition 8.9. The family (y.)e>0 satisfies the LDP in Co([0, T], R?) with rate function

1y = L3I P0de i e B (0.7 R N,
|+ otherwise,

where Im® = {®(f) : f € Co([0,T],R%)}.

Proof. A detailed proof of the proposition can be found in [DO10, Section 4]. We present here only
the main idea. For the proof of the lower bound we take a closed set ' C Co([0, 7], R?) and estimate
from above the upper limit

limelnP F}=IlimelnP {® F}=IlimelnP o~ HF
lim eln {y. € F} limeln {®(w.) € F} limeln {w: € (F)}

< Tm ey < _
_il_r}(l)slnP{wee® (F)}_ @i?(fF)IW

where I,, is the rate function defined in Theorem 7.1 and ®~'(F) = {f € Co([0,T],R?) : &(f) € F}.
So, in order to obtain the upper bound (3.3), one needs to prove

inf I, = inf I, (: inff> 36
>-1(F) >=1(F) F

3P {w is a point of discontinuity of ®} > 0
36We remark that this equality and the equality for open G trivially holds if ® is continuous, since ®'(F) is closed
and ®~'(G) is open
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Similarly, for the proof of the lower bound (3.4), one needs to show that

inf I,= inf I, <:inf1:>
d-1(@)° >-1(G) G

for any open set G C Cy([0, T], R%). The proof of those equalities can be found in [DO10, Section 4] [

Exercise 8.10. Let ® be defined by (8.6) for d = 1 and B = {0}. Show that ® maps C[0,7] to
C[0,T]. Prove that it is discontinuous.

9 Sanov’s Theorem

Let U = {u1,...,uq} be a finite set. We consider a family of i.i.d. random variables X1, X», ... taking
values in U and for every n > 1 define the random probability measure on U as follows

1 n
[y = n;axk, (9.1)

that is, for every ¢ : U = R

n

/Uw(u)un(dU) = %Z‘P(Xk)~

k=1

The random measures p,, take a values in a metric space P(U) of all probability measures endowed
with the distance of total variation.

Exercise 9.1. (i) Let |v|7y denote the total variation of a signed measure®” on U. Show that

d
= viry =Y lnl{ui}) = v({ui})].
i=1

Therefore, the convergence of a sequence (vy,)p>1 to v in P(U) is equivalent to the convergence
of vp({u;}) = v({ui}), n — oo, for each i € [d].

(ii) Show that a sequence (vy,)n>1 converges in v in P(U) if and only it v, — v weakly.

(iii) Prove that the space P(U) is complete and separable.
(Hint: Use the isometry between P(U) and the simplex A = {(z1,...,2a) ER?: 21+ -+ 24 =1})
We remark that according to the strong law of large numbers the sequence of probability measures

(ftn)n>1 converges almost surely to the distribution of X; denoted by p (see Exercise 9.2). In this
section, we are interested in the large deviation principle for the family (i,)n>1 in the space P(U).

Exercise 9.2. Let u, be defined by (9.1) and p be the distribution of X1, i.e. u({u;}) =P {X1 = u;},
i € [d]. Show that u,, — pin P(U) a.s.

(Hint: Use Exercise 9.1 and the strong law of large numbers)

"The total variation |v|7v of a signed measure v on U is defined as |v|rv =sup Y. 4. [v(A)|, where is taken over all
U

partitions 7 of the set U
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9.1 Relative entropy

For simplicity of notation, we will further assume that the distribution g of X,, n > 1, from the
previous section satisfies the property p({u;}) > 0 for all i € [d]. For every v € P(U) we define the
relative entropy of v given u by

o= [ ) o - S )

Exercise 9.3. (i) Show that the function H(-|u) : P(U) — R is continuous.

(ii) Prove that H(v|u) > 0 for every v # pu and H(u|p) = 0.

(iii) Show that the function H(-|u) is good, that is, the level sets {v € P(U): H(v|u) < a}, a >0,
are compact in P(U).

We are going to show that (u,)n>1 satisfies the LDP in P(U) with the good rate function I =
H(:|p). In order to prove this, we will need the following estimate.

Lemma 9.4. For every f: U — R and v € P(U) one has

[ fwwiaw 1w [ ) < i),
U U

Moreover, the equality is reached if and only if the function % is constant on {u € U : v({u}) >

0}.

Proof. Using the Jensen inequality, we can estimate

Lo st o [
R S
ey (fu ome
= /Uln (W) v(du) <In (/U ({7%) ) (du))
:mQAJ@MMO.

fu)
Since the function In is strictly concave, the equality is reached if and only if the function %u(i{)“}),

u € U, is constant on {u: v(u) > 0}. The lemma is proved.

9.2 Sanov’s theorem (particular case)

Theorem 9.5 (Sanov). Let X1, Xs,... be i.i.d. U-valued random variables with distribution p, where
U is a finite set and pu({u}) > 0 for every u € U. The family

1 n
MHZEZ(SXIC, nZl,
k=1
satisfies the LDP in P(U) with rate function H(-|u).
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Proof. We will prove the theorem combining multidimensional Cramer Theorem 4.5 and the contrac-
tion principle. We consider the simplex A = {(21,...24) €R?: 21+ +24=1, 2, >0, i € [d]} as
a metric subspace of R%. Since the set A is closed in R, the space A is a complete separable metric
space. We next define the following map

d

®(x) = in(suw T = (xi)ie[d]y

i=1
from A to P(U). By Exercise 9.1, the map ® is continuous. We consider the following random vectors
§n = (x,=u})iclg, m = 1. It is trivial that §, € A for all n > 1. Hence, the random vectors

Sn — w, n > 1, take values from A. We remark that

n
1
0] (Sn) = lUp, n>1.
n

1 n d 1 n
® <n ) Z < ZH{Xk “z}) - Z (ZH{Xk:uz}5u1> = E Z(SX,C = Hn-
kil i=1 k=1

=1

Indeed,

Therefore, the LDP for (,un)nzl will directly follow from the contraction principle and the LDP for
(%Sn)nzl n A
By multidimensional Cramer Theorem 4.5, the empirical means (%Sn)nzl satisfy the LDP in R%
with rate function ¢* that is the Fenchel-Legendre transform of the comulant generating function
©(\) =InEeM, X eRY,

where trivially the function p()\) < oo for every A € R% Let us show that this family satisfies the
LDP in the metric space A with rate function ¢*(x), z € A. The upper bound immediately follows
from the fact that every closed set F in A is also closed in R%. We will only prove the lower bound.
Let G be an open set in A. Then there exists an open set G in R? such that G = G N A. Using the
LDP for (%Sn)nZI in R?, we get

1 1 1 1 ~ )

lim ln]P’{nSneG}: lim ln]P’{nSneG}Z—lnﬁgo( ) > — inf ¢*(x).

n—oo N n—oo T el z€G

By Theorem 8.1, the family (4,,),>1 satisfies the LDP in P(U) with rate function
I(v)=inf{p*(z): ®(z)=v, x € A}, veP).
Since the function @ is bijective with
e~ (v) = (v({ui)ier, v €PU),

we can conclude that I(v) = ¢* ((v({ui})e(q) for all v € P(U).
In order to show that I(v) = H(v|u), we first compute the comulant generating function ¢ of ;.
For A = (\i)igq) € R? we have

d
=In <Ee i=1 Ml - “z}) =IhE (ZeAiH{X1=u¢}>
i=1
d
=In (Z e p({ui}) )

=1
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Then for v € P(U)

d
I(v) = sup {ZA v({u;}) — o(A } = sup {Z v({u;}) —In (Z Alu({m}))}

AeRd AeRe | = 1

:fél@{/ It ( / ef*(“’Mdu))} < H(vlp)

by Lemma 9.4, where the function f : U — R is defined as fy(u;) = ), i € [d]. Taking A € R? such

that efktt(igi(#i}) = eklj("{gﬁs}) is constant on {7 : v({u;}) > 0}, we get that I(v) = H(v|u), according

to the same lemma.
The fact that H(-|u) is a good rate function follows from Exercise 9.3 (iii).

O

Exercise 9.6. Let &1,&9, ...be independent Bernoulli distributed random variables with parameter
€ (0,1). Using Sanov Theorem 9.5 and the contraction principle show that the family (%Sn)nzl
satisfies the large deviation principle with good rate function

1— .
I(z) = zlnf+(1—2)ln= 1fx€[9,1],
400 otherwise,

where S, =& + -+ +&,.

9.3 Sanov’s theorem (general case)

In this section, we will extend Sanov’s theorem to the case of a complete separable metric space U.
Let U be a complete separable metric space and P(U) is the space of probability measures on P(U),
equipped with the topology of weak convergence, under which P(U) is a complete separable metric
space. Let also u be a fixed probability measure from P(U). We first define on the space P(U) the
relative entropy H (-|u).

We recall that by the Radon-Nikodym theorem, v has a density>® dz with respect to p if and only
if v is absolutely continuous with respect to p, i.e. v(A) =0 for all A € B(U) such that u(A) = 0.
We write v < p if v is absolutely continuous with respect to pu. For every v € P(U) we define the
relative entropy H(v|u) of v given p as

In (% d if
Hvlp) = {fU n (du(u)> vidu) ifv< tu,
400 otherwise.

Exercise 9.7. Prove that H(v|u) > 0 for every v € P(U).

Theorem 9.8 (Sanov). Let X1, Xs... be i.i.d. random variables taking values in U with the distri-
bution function u, where U is a complete separable metric space and p € P(U). Let

1
= — 0x,, m>1,

be the empirical laws of (Xpn)n>1. Then the family (pn)n>1 satisfies the LDP in P(U) with good rate
function H(-|u).

A function f : U — [0,00) is a density of v with respect to p if [, f(u)u(du) < co and v(A) = [, f( ) for all
A € B(U). Such a function is uniquelly defined up to a.s. equality with respect to w
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Proof. The proof of the theorem can be found e.g. in [Swal2, Theorem 2.14] or [DZ98, Teorem 6.2.10].
O

10 Varadhan’s lemma

In this section, we discuss an equivalent version of the upper and lower bounds in the large deviation
principle (see (3.3) and (3.4), respectively) via continuous bounded functions. We start from the
following simple observation. Let & ~ N(0,1). We consider a bounded function f and formally
compute the following limit

-‘rOO xz 1 z2
lim e InE e/ (VE)/E — lim £ 1n / Ric) o

e—0 e—0 S 2me

In spirit of Exercise 3.8, we should expect that

- IR/ _ e 1 e, . 1 s a2
limelnEe = limeln e« e 2dr “="sup | limeln —=e = "2
=0 e=0 —o0 2me zeR \&—0 V2me
2
—sup () = 7 ) =sup (£(2) - 10).
z€eR zeR

where T is the rate function associated with the family (1/2€)e~0. It turns out, that the same equality
takes place for any family (& )c~¢ satisfying the LDP with a rate function I.

Lemma 10.1 (Varadhan). Let a family (& )e=0 satisfy the LDP in a metric space E with a rate
function I, and a function f : E — R be continuous and bounded above, then

Ay = lim e InE e/ €)/¢ = sup (f(x) — I(z)). (10.1)

e—0 2€E

Proof. We first show the lower bound for Ay. Let € E and G := B,(x) C E be the open ball with
the center x and a radius r > 0. We estimate

limeInEef&)/e > liimslnEef(&)/E]I{&eg} > limeln <inf efW/Ep {¢, G})
&€

e—0 e—0 -0 yeG
inf
= lim (5 In e.yecf(y)/e +elnP {& € G})
e—0
= inf — inf I > inf —I(z).
Z}ng(y) [nf, (y) = ;Ielcf(y) (z)

Making r — 0 and using the continuity of f, we get

lim e InEef &)/ > f(2) — I(z)

e—0

for every x € E. Therefore,

lim e InE e/ &)/ > sup (f(z) — I(z)).

e—0 zelR

43



UH
. . B o
Unl.vers1tat'Hamburg S'S2'5 . . Universitat Hamburg
An introduction to large deviations / Prof. Dr. Vitalii Konarovskyi DER FORSCHUNG | DER LEHRE | DER BILDUNG

In order to prove the upper bound, we fix n > 1 and choose finitely many closed sets By, ..., By, C
E (non necessarily disjoint) such that f(z) < —n for all z € By := (|J;; Bx)" and the oscillation of
f on each By is at most %, ie.

sup f(x) — inf f(z) <

k€ [m].
xEBy, z€ By,

S|

The existence of such a collection of closed sets follows from Exercise 10.2. Then, using Exercise 10.3,
we estimate

ZE}ElmEeﬂ&)/6 < {EﬁlnE (Z JKE)/EH{&QM)
k=0

=  max {melnE (ef(gg)/aﬂ{ﬁeeBk})}

ke[m]u{o} Le—=0

< max {limaln <sup e @/Ep (¢, e Bk}> }
ke[m]u{o} |e—0 T€By,

< — inf I V(=

< poax {xseugk fle) - inf (96)} (—n)

< max { sup (f(a:) —I(x) + 1) V (—n)
kE[m] TEBy, n

<sup (@) = 1)+ 3 ) v ()

zelR n
Making n — +oo, we obtain the upper bound. This implies the statement of the lemma. ]

Exercise 10.2. Let f : E — R be a continuous and bounded above function. Show that for every
n > 1 there exists a family of closed subsets By, k € [m], of E such that f < —n on By := Uy, B)*
and the oscillation of f on each By is at most %

Hint: Consider the sets f~* ([b 5]), keZ.

Exercise 10.3. Let A be a subset of £ and f,g: A — R and in}fqg(m) > —o00. Prove that
xe

inf f(x) - gggg(w) < 223(“"””) —g(z)).

We remark that the inverse statement to Varadan’s lemma also holds. Denote the family of bounded
continuous function f: E — R by Cy(E).

Theorem 10.4 (Bruc). Let a family (& )e>0 be exponentially tight and the limit Ay in (10.1) ewxist
for every f € Cy(E). Then (& )eso satisfies the LDP with good rate function

I(x) = sup (f(x)—Af), z€k.
fECH(E)

Proof. First we note that I is lower semicontinuous, as the supremum over a family of continuous
functions. Since Ay = 0 for f = 0, it is also clear that I > 0. By Proposition 6.11, it remains to show
that (& )e>0 satisfies the weak LDP with rate function I.

44



UH
. . B o
Unl‘verSItat'Hamburg S'S2'5 . . Universitat Hamburg
An introduction to large deviations / Prof. Dr. Vitalii Konarovskyi DER FORSCHUNG | DER LEHRE | DER BILDUNG

We fix any § > 0. For every x € E, we may choose a function f, € Cy(F) satisfying

o) = Ag, > (1) = 9) A 5,

and, by continuity, there exists an open ball B, with center at x such that

fol) = Mg, > (@) =0) A%, y€ B

Using the inequality 1 |
H{fsEBz} S eg[fz(gg)ilanEBz fz(y)]

for each € > 0, we can estimate

P{¢& € B} < Ee%[fz(fe)*infyeBx f= ()]
< E et fel6)=Ap—(I()=0)A

I,

=

Thus, by definition of Ay, ,
limelnP{{ € By} <limelnE ez [fr(€) A ~(1(@)=0)A5]
e—0 e—0

— T emEe )/ _ A; — (I(x) =) A %

e—0

1
=—(I(z) =)A=
)
Now fix any compact set K C E, and choose z1, ..., 2, € K such that K C |J;", By,. Then

lim < lim .
il_r}(l)eln]P{ée e K} < g%il_r%slnl}”{fe € By, }

1 1
< _@rél[%([(xl) —9)A 5 < —;él;f{(l(x) — ) A 5
The upper bound now follows as we let 6 — 0.

Next consider any open set G and element x € GG. For each n € N we may choose a continuous
function f, : E — [—n,0] such that f,(z) =0 and f, = —n on G°. Then
—I(x)= inf (Ar— f(x)) <A
(@)= nf (s~ f(2)) < Ay,
= liIr(l)ElnEef(gf)/s <limelnP{{ € G}V (—n).
e—

e—0

The lower bound now follows as we let n — oo and then take the supremum over all x € G. This
completes the proof of the theorem. O

Remark 10.5. We note that all results of this section remains true for a family of random variables
(&n)n>0 with e replaced by ay,.

We will complete this section with the application of Varadhan’s lemma and Bruc’s theorem to
a family of measures with exponential densities that appears e.g. in statistical mechanics (see Sec-
tion 12.1 below). We will consider a countable family (&,),>0 of random elements in a metric space
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E and a function K € Cy(E). Define a new family of random elements (,,),>1 whose distribution is
given by

1
P {, € A} = E ey e ay|, A€ B(E), (10.2)

where Z,, := E f(&n)/an,
Proposition 10.6. Let a family (§,)n>1 satisfy the LDP in a complete separable metric space E with

a good rate function I and let (n,)n>1 be as above for K € Cy(E). Then (nn)n>1 satisfies the LDP in
E with the good rate function

1%(2) = I(2) = K(z) — inf (I(s) = K(1), @€ E. (10.3)

Proof. For the proof of the proposition we will use Theorem 10.4. We first note that the family (&,)n>1
is exponentially tight due to Proposition 6.12. This implies that (7, ),>1 is exponentially tight. Indeed,
for each 8 > 0 there exists a compact set K5 C E such that

lim a,InP{¢, & Ks} < —2sup |K(x)| — B.
n—oo =)

Therefore,

T T 1 K(&n)/an
T et (o € K5} = Fg anln (58 [ M ] )

n

_ Tm (anlnE [eK(gn)/“”H{gnng}} —anlnEeK(gn)/a”>

n—oo

< Tm (an ILE [esupzemm)\/anﬂ{ &GKE}} —ap 1nefsupz6E\K(x)l/an>
n—o0

= lim a,InP{&, € K§} +2sup |K(z)| < —8.

We next fix f € Cp(E) and compute

1 SEn)+K(En)
Afc( := lim apInEefm)/an — Jim g, In {Ee an ]
n—00 n—00 Zn,
. fEn)+K(En) .
= lim a,InEe an — lim a,InZ,
n—oo n—oo
fEn)+K(En)
= lim a,InEe an — lim a, InEeXEn)/an
n—oo n—oo
= sup(f(z) + K(z) — I(z)) — sup(K(z) — I(z))
zel zeE
= sup(f(z) — [[(z) — K(2)]) + inf (I(z) — K(z)) = sup (f(z) — ["(2)),
z€F relE z€E
by Lemma 10.1. Then using Theorem 10.4 and Exercise 10.7, we get that (7,),>1 satisfies the LDP
with good rate function 1. O

Exercise 10.7. Let I be defined by (10.3) for a good rate function I and K € Cy(E), where E is a
complete separable metric space.

(i) Show that the function I is good.
(ii) Prove the equality

I®(z) = sup (f(x)—Afc{), x€F,
FeCy(E)

where Aff = sup,cp (f(z) — I%(2)).
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11 Exponential equivalence

In order to prove that a family (£:)e~¢ satisfies a large deviation principle with a given rate function,
it is often convenient to replace the random elements & by some other random elements 7. that are
“sufficiently close”, so that the LDP for (1.)c>0 implies the LDP for (£.)c>0. We consider the following
example.

Example 11.1. Let a,b : R — R be bounded Lipschitz continuous functions and w(t), ¢t € [0,T] be
a standard Brownian motion. We are interested in the LDP in Cy[0, 7] for solutions to the following
perturbed SDEs

dxo(t) = a(z:(t))dt + eb(x(t))dt + Vedw(t), x(0)=0.

Let us compare the solutions to those equations with the solutions to the non-perturbed SDEs
dze(t) = a(z:(t))dt + Vedw(t), 2z:(0) =0.

for which we have already proved the LDP (see Section 8.2). We estimate

|7e(t) — ze(t)| =

/0 (a(z:(s)) — a(z:(s)))ds + 5/0 b(xe(s))ds

< [ lateu(6)) — o)) +<lplloT
gL/O (2 (s) — 2 ()|ds + £lblloT, ¢ € [0,7],

where || - ||¢ denotes the supremum norm in Cy[0,7] and L is the Lipschitz constant for a. Using
Gronwall’s Lemma 21.4 [Kal02], we get |2.(t) — z-(t)| < e||b||cTe", t € [0,T]. Hence
lz = zellc < ellbllcTe .

In particular, this implies that for every § > 0
il_rf(l)slnP {l|lxe — z¢]| > 0} = —o0.
As we will see later this is enough to conclude that the family (z:).>0 satisfies the LDP in Cy[0, T
with the same good rate function as (z:)->0, which is defined by (8.4).
Let (E,d) be a complete separable metric space.

Definition 11.2. We will say that families (& ).>0 and (7:)e>0 of random elements in E are expo-
nentially equivalent if for every 6 > 0

limelnP {d(&,n:) > 0} = —o0.
e—0

The notion of exponentially equivalence for two sequences (&,)n>1 and (1, ),>1 of random elements
on FE is defined similarly.

Proposition 11.3. Let families (§:)e>0 and (n:)e>0 of random elements in a separable metric space
E be exponentially equivalent. Then (& )eo satisfies the LDP with a good rate function I iff the same
LDP holds for (nz)e>0-
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Proof. Suppose that the LDP holds for (£.)c~¢ with rate function I. We fix any closed set F C E,
and denote the closed d-neighborhood of F by F, i.e.

FO={zxeE: d(z F) <d},

where d(z, F) = inlf7 d(z,y). Then one has
ye

P {775 € F} <P {775 S d(f&t,ne) < 6}+P {d(geane) > 6}
<P {& € F'} +P {d(g.n) > 5}

for all e > 0. Using the LDP for (&.)c~0, the exponential equivalence and Exercise 3.8, we can estimate

TmelnP {n. € F} < Tmeln (IE” {55 € F5} +P {d(, ) > 5})
e—0 e—0
T 1) T
< max {ll_r)l(l)ElnP {55 er },21_1)1551111?’ {d(&,me) > 5}}

Smax{— inf I(:z:),—oo} = — inf I(z).
zeF? zeFd

Since [ is a good rate function, one can show that inf(S I(z) — ianI(a:) as 6 — 0 (see Exercise 11.6).
zeF z€

This implies the upper bound (3.3) for the family (7:)e>0.
We next prove the lower bound (3.4) for (7:)e>0. Let G be a fixed open subset of E and z € G. If
d(xz,G) > 3§ > 0, then the ball Bs(x) is contained in G. We estimate as before

P {¢ € Bs(2)} <P {& € Bs(x), d(&e,ne) < 0} + P {d(&,n.) > 0}
<P {n e G+ P {d(&,n:) > 0}

Therefore, using the LDP for (£.).>0 and the exponential equivalence, be get

“I(z) < — inf I(y) <limelnP {& € Bs(z)} < limeln (P {n. € G} + P {d(&.,n.) > 0})

yEBs(x) e—0 e—0
< max{limslnP {n. € G},limelnP {d(&,n.) > 5}} =limelnP {n. € G}.
e—0 =0 e—0
Taking the supremum over all x € G, we obtain the lower bound. The proposition is prove. O

Remark 11.4. The statement of Proposition 11.3 remains true for families (&,)n>1 and (7,)n>1-

Exercise 11.5. Let F be a closed subset of E. Show that the closed §-neighborhood F? = {x € E :
d(z,F) < 4} of F is a closed set and (oo F° = F.

Exercise 11.6. Let I : E — [0,00] be good, F be a closed set and F° be the closed d-neighborhood
of F. Show that inf I(z) — inf I(z) as § — 0.
zEFS z€F
Propostion 11.3 shows that large deviation principle are “robust” , in a certein sense, with respect
to small perturbations. The next result is of similar nature. We will prove that weighting measures
with densities does not affect a large deviation principle, as long as these densities do not grow
exponentially fast.
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Considering a family of random elements (;,),>1 on a metric space E and measurable bounded
functions K, : £ — R, we define a new family (1,),>1 whose distributions are defined by

1
P {1 € A} = E [¢@)/onpg ), AeB(B),

where Z,, := E efn(n)/an,

Lemma 11.7. Let a family of random elements ({,)n>1 satisfies the LDP in a metric space E with
rate function I. Let (nn)n>1 be as above for measurable bounded functions K, : E — R, n > 1,
satisfying

lim sup |K,(z)| = 0.

n—oo Py )

Then (ny)n>1 satisfies the LDP in E with the same rate function I.

Proof. We check the upper and lower bounds for the LDP. Using the fact that (&,),>1 satisfies the
LDP, for any closed set F' C F we have

Tim Timm 1 Kn(&n)/an
nh_)rrgo apInP {n, € F} = nh_}ngo an In (ZIE [e (&n)/ H{gnEF}}>

n

= lim (_an InE fnEn/an g nE [eKn(gn)/anH{fneF}D

n—oo

< lim (—an In e~ SUPzer Knl/an 4 o (esuprE [Knl/anp {&n € F}))

n—oo

= lim <25up|Kn| +a,InP {¢, € F}) < — inlfwl(:n).
xre

n—oo z€E

Similarly, for each open G C F

. - 1 Kn(€n)/an
lim a, InP {n, € G} = lim a,In (ZnE [ (En)/enle, eG}D

n—o0 n—oo

:nl%lo( ap I EfnEn/an g InE [BK” T e G}])

Znhjnolo ( a,, In ¢¥Paer [Knl/an | o 1y (6 supcp [Knl/anp ¢ 6@))

= lim <—28up|Kn\+anln[P’{fn G}) > — mf I( )

n— 00 zel

This completes the proof of the lemma. O

12 Some applications of large deviations

12.1 Curie-Weiss model of ferromagnetism

This section is taken from [RAS15, Section 3.4].

In this section, we consider an application of LDP in statistical mechanics, using a toy model of
ferromagnetism. Let us imagine that a piece of material is magnetized by subjecting it to a magnetic
field. Then assume that the field is turned off. We are interesting if the magnetization persist.
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To answer this question, we introduce a model called the Curie-Weiss ferromagnet and will try to
understand this using large deviation theory.

Let us start from the description of the model. Consider n atoms each of them have a +1 valued
spin w;, ¢ = 1,...,n. The space of n-spin configurations is 2, = {—1,1}". The energy of the system
is given by the Hamiltonian

n

J n n J 1 n n
Hn(w) = —% Z WiWs —h;wj' = —5 Zwi n;wj - h;wj. (12.1)

ij=1 i=1

A ferromagnet has a positive coupling constant J > 0 and h € R is the external magnetic field. Since
nature prefers low energy, ferromagnet spins tend to align with each other and with the magnetic field
h, if h # 0. The Gibbs measure for n spins is

1
(W) = Z—efﬁ”*‘nmpn(w), wE 0,

n
Here P, (w) = 2%, 8 > 0 is the inverse temperature and Z,, is the normalization constant.

The Gibbs measure captures the competition between the ordering tendency of the energy term
H(w) and the randomness represented by P,. Indeed, let h = 0. If the temperature is high (8 close
to 0), then noise dominates and complete disorder reigns at the limit, limg_,oy,(w) = P,. But if
temperature goes to zero, then the limit limg_,o 15 (w) = %(&J:l + dw=—1) is concentrated on the two
ground states. The key question is the existence of phase transition: namely, if there is a critical
temperature 3.! (Curie point) at which the infinite model undergoes a transition that reflects
the order/disorder dichotomy of the finite model.

Let a random vector (n1,...,n,) have distribution 7,,. We define magnetization as the expectation
M, (B,h) =E S, of the total spin S, = > 1" ; ;. We will show that %Sn converges and there exists a
limit 1

m(B,h) = im —M,(B,h).
n—o0o N
Then we will see something interesting as h — 0. We remark, that m(3,0) = 0, since v, (w) = Yn(—w).

Proposition 12.1. The family ( S’n) satisfies the LDP in R with rate function

1
n n>1
I(x) t1l—2)m(l—2)+ i1 +2)In(l +2) — $JB2% — Bhae —c  ifx € [-1,1],
xTr) =
400 otherwise,
where ¢ = i[nf | {3(1—2)In(1 —z) + (1 + 2) In(1 + 2) — §J B2 — Bha}.
ze[—1,1
Proof. To prove the proposition we will apply Sanov’s theorem and contraction principle. Let U :=
{-1,1} and &, i = 1,...,n, be canonical random variables on the probability space (Q,,2%", P,),
that is, §(w) = w; for all w = (w;)i=1,..n € . In particular, this implies that & are independent
U-valued random variables with
1
, 1

Pl =-1}=PRufei=1} =5, i=1...n

We consider the empirical distributions
1 n
= — 0¢, n€EN,
Hn n 1; &k
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and define the family of random measures v,, n € N, by
P A} = LE [erK
{4} = 5B [0, )

for each Borel set A C P(U), where the expectation is taken with respect to the measure P,

K(p) =7 ( /U uu(du>)2 + A /U ups(du)

and Z, is a normalizing constant. Since

n d 2
/Uu,u u) Z§
and )
K(p(w) = 2 (fl Zw) +hBY
i=1 i=1

it is easy to see that 15, coincides with [;; uvy,(du).
Next, using Sanov’s Theorem 9.5, we get that the family (uy,)n>1 satisfies the LDP in P(U) with
rate function
H(pylp) =2 +ylny+ (1 —y)In(1l —y)
for all p, = yo_1 + (1 —y)o1 € P(U), y € [0,1], where p = %5_1 + %51 is the distribution of &;. Since
K : P(R) — [-1,1] is a bounded continuous function, the family (1,),>1 satisfies the LDP in P(U)
with rate function

Lulpy) s = Hipylp) = Klpy) = Inf (H(pln) = K(p))
:1n2—|—ylny+(1—y)ln(1—y)—%5(1—2 )2 — hB(1 — 2y)
_ zél[lof,l] [an +ylny+ (1 —y)In(l —y) — J?ﬂ(l —2y)% — hB(1 — 2y)

for all p, = yo_1 + (1 —y)d1 € P(U), y € [0,1], according to Proposition 10.6. The claim of the
statement follows now from the contraction principle applied to the continuous map

v /Uuu(du) = —u(—1) + v(1)
and the observation that for each z € [—1,1]
1) =int {1(0): [ upyfa) =+ (1= = ye o1}
—1 (kaz) - %(1 —2)In(1 — ) + %(1 +2)In(l +2) — %Jﬁ:ﬁ — Bhz —c,

where ¢ = 1[nf1 . {3(1—2)In(1 —2) + (1 + 2) In(1 4+ z) — 3JBz* — Bha}
xe|—1,
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In order to understand limit of %Sn, we find the minimizers of the rate function I. Critical points
satisfy I’(z) = 0 that is equivalent to the equation

1 1
ilnli—i — JBx+ph, we[-1,1]. (12.2)

Theorem 12.2. Let 0 < 8,J < o0 and h € R.

(i) For h # 0, m(B,h) is the unique solution of (12.2) that has the same sign as h.

(i) Let h =0 and § < J1. Then m(B,0) = 0 is the unique solution of (12.2) and m(B,h) — 0 as
h — 0.

(iii) Let h = 0 and B8 > J~t. Then (12.2) has two nonzero solutions m(B3,+) > 0 and m(B,—) =
—m(B,+). Spontaneous magnetization happens: for 3 > J~! =: .,

~11H1 m(/Ba Ijb) = m(ﬁa +) and ~hm m(ﬁ? B) = m(67 _)'
h—0+ h—0—

We note that statements (i) and (ii) follows directly from the form of equation (12.2). Statement
(7i7) is the direct consequence of the further proposition and the dominated convergence theorem.

I

I I
\ A A A
T z
0 1

-1 -1 0 1 -1 0 1
-1

-1 0 1
The graphs of the rate function I. Top plots have B > J~1 while bottom plots have 8 < J~1. Top left

to right: h =10, 0 < h < ho(J,8) and h > ho(J, 3). Bottom left to right, h =0 and h > 0. The case
h < 0 is symmetric to that of h > 0.

xr
I 1
A
0

>
1

Proposition 12.3. (i) Suppose that either h #0, or h=0 and 3 < J~'. Then %Sn — m(B, h).
(it) If h =0 and 8 > J~1, then 1S, — ( weakly, where P {{ =m(B,+)} =P {¢ =m(3,-)} = 3.

Proof. We note that the first part of the proposition follows from the fact that the rate function I has
a unique minimizer. Indeed,

n—oo n |[z—m(B,h)|>e

lim 11n]P’{‘7115’n—m(6,h)‘25}§— inf I(z) <0.
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For part (ii) the large deviation upper bound can be obtained similarly

Iim P {
n—od

Form v, (w) = yn(—w) it follows that S,, is symmetric and so

%Sn—m(ﬁ, —)’ <e or ’:LSn—m(ﬁ,—i—)‘ <5} =1.

1 1 1
lim P {‘Sn —m(pB, —)‘ < 5} = lim P {‘Sn —m(ﬂ,—i—)‘ < 8} =_.
This shows the weak convergence of %Sn to (. O

12.2 Varadhan formula

The goal of the present section is to show a connection of diffusion processes with the underlying
geometry of the state space. This result was obtained by Varadhan in [Var67]. So, we are interesting
in deviations of solution x(t) of the SDE in R?

dz(t) = o(x(t))dw(t), x(0) = o, (12.3)

from the initial value of xo as ¢ — 0, where w(t), t € [0,1], denotes a standard Brownian motion in
R? and the d x d-matrix ¢ is Lipschitz continuous.
We first consider the following family of SDEs

dz:(t) = o(xe(t))dwe(t), x(0) = xo, (12.4)

where w.(t) = /ew(t), t € [0,1]. For every £ > 0 the solution is the diffusion process corresponding
to the operator

€ 0% f
L - L)
e(f) 9 Z Qg aCUiCCj’
2,7=1
with a = oo*. We also assume that the matrix a is bounded and uniformly elliptic, that is, there
exists ¢ > 0 ans C > 0 such that for all A = (Aq,...,\q) € R?

I AI? < Aax < CIAJP,

where Aa\ = Zgjzl a;jAiAj. We remark that for every e > 0 SDE (12.4) has a unique solution z. on

the space C([0, 1],R%).3? The proof of the following theorem can be found in [Var84, Section 6].

Theorem 12.4. The family (z.)e>o satisfies the LDP in C([0,1], R?) with rate function

1) = {% Jo FQa O 0d i £ € HE(01,K),

400 otherwise,

where H2 ([0, T];R?) is defined similarly as H3([0, T};R?), the only difference is f(0) = zo.

#see e.g. Theorem 21.3 [Kal02]
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Now we are going to obtain the LDP for the family (z(¢))e>o where z(t), ¢ € [0, 1], is a solution
to equation (12.3). It is easily to see that x(¢) = z.(1). So, we can apply the contraction principle to
the LDP for (z.)c»0. We take the following continuous map on C([0, 7], R%)

<I>(f) = f(1)> VS C([O>T]7Rd)'

Then the family (z(e) = ®(z¢))e>0 satisfies the LDP with rate function

Liy(w1) = inf {1(f) [ € H}(0,T),RY), f(1) =}

1 L. . d2($0 xl)
= — inf Ha Y (f) ft)dt =2 ——2
T W (OO ;
where the later infimum is taken over all functions f € HZ ([0,1],R?) which end at z; (and begin at
l’o).
Let us define locally the metric on R? as

d
d82: E aijd:vida:j.
ij=1

Then the distance

D=

1
d(ﬂﬁo,l‘l):(iﬂf{ [ dwai s £ e a2 o.1.1, f<1>=1}> . w001 €RY

coincides with the global geodesic distance

1
dgeodm,xl)—inf{ | Viwa s e o0,z f<1>—1}, 7,01 € RY,

induced by this metric.
Exercise 12.5. Show that dg..q is a distance of R4,

We remark that the operator L is the Laplace-Beltrami operator on the Riemannian manifold R¢
(with metric ds?) and the associated process z(t), t € [0, 1], plays a role of Brownian motion on this
space.

For further applications of large deviation principle see also [Var08].
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