

Problem sheet 10

- 1. Let $H(\nu|\mu)$ be a relative entropy of ν given μ , where $\nu, \mu \in \mathcal{P}(U)$ and U be a finite space.
 - (i) Show that the function $H(\cdot|\mu): \mathcal{P}(U) \to \mathbb{R}$ is continuous.
 - (ii) Prove that $H(\nu|\mu) > 0$ for every $\nu \neq \mu$ and $H(\mu|\mu) = 0$.
 - (iii) Show that the function $H(\cdot|\mu)$ is good, that is, the level sets $\{\nu \in \mathcal{P}(U) : H(\nu|\mu) \leq \alpha\}$, $\alpha \geq 0$, are compact in $\mathcal{P}(U)$.
- 2. Let ξ_1, ξ_2, \ldots be independent Bernoulli distributed random variables with parameter $p \in (0, 1)$. Using Sanov's theorem and the contraction principle show that the family $(\frac{1}{n}S_n)_{n\geq 1}$ satisfies the large deviation principle with good rate function

$$I(x) = \begin{cases} x \ln \frac{x}{p} + (1-x) \ln \frac{1-x}{1-p} & \text{if } x \in [0,1], \\ +\infty & \text{otherwise,} \end{cases}$$

where $S_n = \xi_1 + \cdots + \xi_n$.

3. Let f be a continuous and bounded above function from a metric space E to \mathbb{R} . Show that for every $n \geq 1$ there exists a family of closed subsets B_k , $k \in [m]$, of E such that $f \leq -n$ on $B_0 := (\bigcup_{k=1}^m B_k)^c$ and the oscillation of f on each B_k is at most $\frac{1}{n}$.

Hint: Consider the sets $f^{-1}\left(\left[\frac{k-1}{n},\frac{k}{n}\right]\right), k \in \mathbb{Z}$.

4. Let A be a subset of E and $f, g: A \to \mathbb{R}$ with $\inf_{x \in A} g(x) > -\infty$. Prove that

$$\inf_{x \in A} f(x) - \inf_{x \in A} g(x) \le \sup_{x \in A} (f(x) - g(x)).$$