Problem sheet 2

1. Assume that a random variable ξ has a finite first moment $\mathbb{E} \xi = \mu$ and let φ be the comulant generating function associated with ξ . Show that for every $x > \mu$ and all $\lambda < 0$

$$\lambda x - \varphi(\lambda) \le 0.$$

(Hint: Use Jensen's inequality.)

2. Let φ be a comulant generating function associated with ξ . Show that the function φ is differentiable in the interior of the domain $\mathcal{D}_{\varphi} := \{x \in \mathbb{R} : \varphi(x) < \infty\}$. In particular, show that $\varphi'(0) = \mathbb{E} \xi$ if $0 \in \mathcal{D}_{\varphi}^{\circ}$.

(*Hint*: To show the differentiability of φ , it is enough to show that $\mathbb{E} e^{\lambda \xi}$, $\lambda \in \mathbb{R}$, is differentiable. For the differentiability of the latter function, use the definition of the limit, the dominated convergence theorem and the fact that the function $\frac{e^{\varepsilon a}-1}{\varepsilon}=\int_0^a e^{\varepsilon x}dx$ increases in $\varepsilon>0$ for each $a\geq 0$.)

- 3. Show that the Fenchel-Legendre transform of a convex function f is also convex.
- 4. Show that the Fenchel-Legendre transform of the comulant generating function associated with N(0,1) coincides with $\frac{x^2}{2}$.
- 5. Suppose that φ^* is the Fenchel-Legendre transform of the cumulant generating function of a random variable ξ with $\mathbb{E}\,\xi=\mu$. Show that
 - (i) $\varphi^*(x) \geq 0$ for all $x \in \mathbb{R}$. (Hint: Use the fact that $\varphi(0) = 0$)
 - (ii) $\varphi^*(\mu) = 0$. (Hint: Use (i) and Jensen's inequality to show that $\varphi^*(\mu) \leq 0$)
 - (iii) φ^* increases on $[\mu, \infty)$ and decreases on $(-\infty, \mu]$. (Hint: Use the convexity of φ^*)
- 6. Let φ^* be the Fenchel-Legendre transform of the comulant generating function of a random variable ξ . Let also $\beta = \text{ess sup } \xi < \infty$. Show that $\varphi^*(x) = +\infty$ for all $x > \beta$.

Hint: Show that $\lim_{\lambda \to +\infty} (\lambda x - \varphi(\lambda)) = +\infty$.