

Problem sheet 4

1. Let $a_n > b_n$, $n \ge 1$, be positive real numbers such that there exist limits (probably infinite)

$$a := \lim_{n \to \infty} \frac{1}{n} \ln a_n$$
 and $b := \lim_{n \to \infty} \frac{1}{n} \ln b_n$

and a > b. Show that

$$\lim_{n \to \infty} \frac{1}{n} \ln(a_n - b_n) = a.$$

- 2. Let $(\xi_{\varepsilon})_{{\varepsilon}>0}$ satisfies the LDP in E with rate function I. Show that
 - a) if A is such that $\inf_{x \in A^{\circ}} I(x) = \inf_{x \in \bar{A}} I(x)$, then

$$\lim_{\varepsilon \to 0} \varepsilon \ln \mathbb{P} \left\{ \xi_{\varepsilon} \in A \right\} = -\inf_{x \in A} I(x);$$

- b) $\inf_{x \in E} I(x) = 0.$
- 3. Let $E = \mathbb{R}$ and $\xi \sim N(0,1)$. Show that the family $(\varepsilon \xi)_{\varepsilon>0}$ satisfies the LDP with rate function

$$I(x) = \begin{cases} +\infty & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

- 4. For any random vector $\xi \in \mathbb{R}^d$ and non-singular $d \times d$ matrix A, show that $\varphi_{A\xi}(\lambda) = \varphi_{\xi}(\lambda A)$ and $\varphi_{A\xi}^*(x) = \varphi_{\xi}^*(A^{-1}x)$.
- 5. For any pair of independent random vectors ξ and η show that $\varphi_{\xi,\eta}(\lambda,\mu) = \varphi_{\xi}(\lambda) + \varphi_{\eta}(\mu)$ and $\varphi_{\xi,\eta}^*(x,y) = \varphi_{\xi}^*(x) + \varphi_{\eta}^*(y)$.
- 6. Let ξ_1, ξ_2, \ldots be independent normal distributed random vectors in \mathbb{R}^d with mean 0 and positively defined covariance matrix C. Show that the empirical means $\left(\frac{1}{n}S_n\right)_{n\geq 1}$ satisfies the LDP in \mathbb{R}^d and find the corresponding rate function I.