

Problem sheet 5

- 1. Let $f_{\lambda}: E \to \mathbb{R}$, $\lambda \in \mathbb{R}$, be a family of continuous functions, where E is a metric space. Show that the function $f(x) = \sup_{\lambda \in \mathbb{R}} f_{\lambda}(x)$, $x \in E$, is lower semi-continuous.
- 2. Let E be a metric space and $f: E \to [-\infty, +\infty]$. Define

$$f_{lsc}(x) = \sup \left\{ \inf_{y \in G} f(y) : G \ni x \text{ and } G \text{ is open} \right\}.$$
 (1)

- (a) Show that if $x_n \to x$, then $f_{lsc}(x) \leq \underline{\lim}_{n \to \infty} f(x_n)$. (*Hint:* Use Lemma 5.2, namely that the function f_{lsc} is lower semi-continuous and $f_{lsc} \leq f$)
- (b) Show that for each the supremum in (1) can only be taken over all ball with center x, namely

$$f_{lsc}(x) = \sup_{r>0} \inf_{y \in B_r(x)} f(y)$$
(2)

(*Hint*: Use the fact that any open set G containing x also contains a ball $B_r(x)$ for some r > 0. It will allow to prove the inequality $f_{lsc}(x) \le \sup_{r>0} \inf_{y \in B_r(x)} f(y)$. The inverse inequality just follows from the observation that supremum in the right hand side of (2) is taken over smaller family of open sets)

(c) Prove that for each $x \in E$ there is a sequence $x_n \to x$ such that $f(x_n) \to f_{lsc}(x)$ (the constant sequence $x_n = x$ is allowed here). This gives the alternate definition

$$f_{\rm lsc}(x) = \min \left\{ f(x), \underline{\lim}_{y \to x} f(y) \right\}.$$

(*Hint*: Use part b) of the exercise to construct the corresponding sequence $x_n, n \ge 1$)

3. Let (E,d) be a metric space and $f:E\to [0,+\infty)$ be lower semi-continuous. Define for each $n\in\mathbb{N}$ the function

$$f_n(x) = \inf_{y \in E} \{ f(y) + n \cdot d(x, y) \}, \quad x \in E.$$

Show that

- (a) f_n increases, that is, $f_n(x) \leq f_{n+1}(x)$ for all $x \in E$ and $n \in \mathbb{N}$;
- (b) f_n is continuous for each $n \in \mathbb{N}$;
- (c) $f(x) = \lim_{n \to \infty} f_n(x) = \sup_{n \in \mathbb{N}} f_n(x)$ for all $x \in E$.