

Problem sheet 6

- 1. Let E be a complete and separable metric space.
 - a) Show that exponential tightness implies tightness for a countable family of random variables.
 - (*Hint*: Prove a similar inequality to one in the previous exercise and then use the fact that any random element on a complete and separable metric space is tight
 - b) Show that tightness does not imply exponential tightness.
- 2. Let $(\xi_{\varepsilon})_{{\varepsilon}>0}$ be a family of random variables in $\mathbb R$ such that there exist $\lambda>0$ and $\kappa>0$ such that $\mathbb E\,e^{\frac{\lambda}{\varepsilon}|\xi_{\varepsilon}|}\leq \kappa^{\frac{1}{\varepsilon}}$ for all $\varepsilon>0$. Show that this family is exponentially tight.

(Hint: Use Chebyshev's inequality)

3. Find a simpler proof of Proposition 6.3 in the case $E = \mathbb{R}^d$.

(*Hint*: Cover a level set $\{x \in \mathbb{R}^d : I(x) \leq \beta\}$ by an open ball and use the upper bound)